
Beginning
SVG

A Practical Introduction to SVG using
Real-World Examples
—
Alex Libby

Beginning SVG
A Practical Introduction to SVG using

Real-World Examples

Alex Libby

Alex Libby
Rugby, Warwickshire, United Kingdom

Beginning SVG

ISBN-13 (pbk): 978-1-4842-3759-5			 ISBN-13 (electronic): 978-1-4842-3760-1	
https://doi.org/10.1007/978-1-4842-3760-1

Library of Congress Control Number: 2018955493

Copyright © 2018 by Alex Libby

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Louise Corrigan
Development Editor: James Markham
Coordinating Editor: Nancy Chen

Cover designed by eStudioCalamar

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/9781484237595. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-3760-1

This is dedicated to my family,
with thanks for their love and support whilst writing this book.

v

About the Author�� xiii

About the Technical Reviewer��xv

Acknowledgments��xvii

Introduction���xix

Table of Contents

Part I: �Getting Started�� 1

Chapter 1: �Introducing SVG��� 3

The Benefits of Using SVG��� 3

Comparing Formats��� 6

Setting Up a Working Environment�� 9

Support for SVG�� 10

Creating a Basic Example�� 12

Understanding How It Works�� 14

Adding Fallback Support�� 15

Types of Fallback�� 17

Implementing a Fallback Image��� 17

Adding SVGs as Background Images�� 18

Managing Inline Support�� 18

Supporting an Icon System�� 20

Summary��� 21

Chapter 2: �Adding SVG Content to a Page��� 23

Implementing SVG Shapes��� 24

Creating Squares and Rectangles�� 24

Drawing Circles and Ellipses�� 27

vi

Drawing Lines, Polylines, and Polygons��� 30

Constructing Paths and Markers�� 32

Creating More Advanced Shapes��� 38

Dissecting Our Gauge Code�� 41

Creating Unusual Shapes with Clip-Paths��� 41

Painting Elements�� 44

Creating Gradients and Patterns�� 46

Constructing Gradients��� 46

Using Radial Gradients��� 49

Taking It Further��� 51

Applying Pattern Effects to CSS Backgrounds��� 51

Setting Advanced Configuration Options�� 57

Summary��� 57

Part II: �In More Detail�� 59

Chapter 3: �Working with Images and Text��� 61

Inserting Images�� 61

Understanding the Benefits�� 63

Exporting Images��� 63

Exporting Images – an Epilogue��� 65

Using SVGs as Data URIs�� 66

Optimizing Our Image��� 67

Understanding How Our Code Works�� 70

Applying Image Masks��� 71

Exploring How the Code Works��� 73

Working with Icons�� 74

Creating Image Sprites with Icons��� 74

Using the <symbol> Element��� 75

Automating the Process��� 78

Table of Contents

vii

Adding Text with the <text> Element�� 81

Applying Different Effects to Text��� 83

Exploring How the Code Works��� 86

Embedding Other Content�� 86

Adding Videos�� 86

Implementing a Real-World Example��� 89

Understanding How It Works�� 91

Summary��� 92

Chapter 4: �Sizing SVG�� 95

Understanding Scalability�� 95

Understanding the Impact of Scaling��� 98

Getting to Grips with SVG Coordinates��� 99

Applying Coordinates to an SVG��� 100

Introducing the SVG Scaling Toolbox�� 102

Setting Height and Width Attributes��� 103

Implementing a viewBox�� 104

Preserving the Aspect Ratio��� 106

Putting the Toolbox to Use��� 108

Understanding How It Works�� 111

Making SVG Content Responsive��� 112

Introducing the Golden Rules��� 114

Updating SVG Images��� 116

Using Media Queries with SVG Content�� 118

Understanding the Pitfalls�� 120

Making SVG images Adaptive or Responsive?��� 121

Summary��� 123

Chapter 5: �Creating Filters�� 125

Introduction�� 125

The Benefits of Using SVG Filters��� 125

Exploring Existing Filters��� 127

Table of Contents

viii

Introducing SVG Primitives for Filters�� 128

Manipulating Content with Filters�� 130

Dissecting Our Code��� 132

Creating and Applying Filters��� 133

Changing Color with Filters�� 135

Understanding Our Code�� 137

Calculating Colors to Use�� 137

Re-creating filters à la Instagram�� 139

Understanding How It Works�� 142

Blending and Merging SVG Filters��� 142

Taking It Further in Watercolors��� 143

Creating Our Filter – an Epilogue��� 145

Animating Filter Effects��� 147

Is This the Right Solution?�� 149

Creating a Practical Example��� 150

Understanding What Is Happening��� 152

Summary��� 153

Chapter 6: �Animating Content��� 155

Animating with CSS��� 155

Understanding the Different Methods�� 157

Transforming SVG Elements Using CSS��� 158

Moving Content with <animate>��� 161

Creating a Clock Using <animate>�� 162

Dissecting Our Code��� 165

Creating Animated SVG Loaders��� 165

Understanding How the Code Works�� 167

Managing Multiple Animations�� 168

Working with Third-Party Libraries�� 170

Introducing Snap.svg�� 171

Table of Contents

ix

Applying Easing Effects to Elements�� 173

Getting Prepared��� 173

Exploring the Code in Detail��� 175

Choosing Our Route – an Epilogue��� 176

Summary��� 177

Chapter 7: �Optimizing SVG��� 179

Exporting SVG Images for Use��� 179

Understanding the Importance of Optimization��� 180

Assessing Performance��� 181

Taking Care of Accessibility��� 183

Making Content Accessible�� 185

Shrinking Images with SVGO��� 186

Optimizing Manually��� 186

Automating the Optimization Process�� 189

Learning How to Micro-optimize Content�� 195

Paying Attention to Data URIs�� 198

Optimizing Data URIs�� 199

Exploring the Code in Detail��� 200

Summary��� 202

Part III: �Putting SVG to Use�� 205

Chapter 8: �Creating SVG Charts��� 207

Understanding the Benefits of SVG for Charts��� 207

Designing Individual Charts Using SVG�� 208

Creating Donuts�� 209

Eating Pie��� 213

Raising the Bar��� 218

Connecting the Dots��� 221

Sparking Lines to Life��� 223

Table of Contents

x

Making Charts Interactive�� 225

Animating Chart Content�� 228

Animating Charts Using CSS�� 229

Animating Charts with Snap.svg�� 232

Breaking Down Our Code��� 234

Making Charts Interactive – a Postscript��� 235

Exploring Other Library Options�� 236

Creating Charts Online Using amcharts.js��� 237

Summary��� 240

Chapter 9: �Incorporating SVG Libraries��� 241

Why Use a Library?�� 241

Choosing the Right Library��� 242

An Overview of Available Libraries��� 243

Using Vivus to Draw SVG Images��� 245

Understanding How It Works�� 247

Creating Bubble Charts with D3��� 248

Exploring Our Demo in Detail�� 252

Improving Our Design��� 252

Getting Creative with Anime.js��� 253

Dissecting Our Demo�� 257

Taking a Different Look at Filters��� 258

Exploring the Code in More Detail�� 261

Summary��� 262

Chapter 10: �Taking It Further��� 265

Manipulating SVG with JavaScript��� 265

Dissecting the Markup Code�� 267

Dissecting Our Code – the Functions Used�� 269

Animating Borders Using SVG�� 271

Dissecting the Demo�� 274

Table of Contents

xi

Creating Menus Using GSAP and SVG�� 274

Understanding How It Works�� 277

Lazy Loading with SVG��� 277

Breaking Apart Our Code�� 280

Creating Template-Based Charts��� 281

Dissecting the Code�� 287

A Parting Shot�� 289

Tilting UI Effect��� 290

Panning and Zooming Images�� 291

Tracking Progress��� 292

Summary��� 293

�Index�� 295

Table of Contents

xiii

About the Author

Alex Libby is a Digital Ops / MVT developer, working for a global distributor based in

the United Kingdom. Although Alex gets to play with different technologies in his day

job, his first true love has always been with the open source movement, and in particular

experimenting with front-end frameworks and libraries. To date, Alex has written a host

of books on subjects such as jQuery, HTML5 Video, SASS, and PostCSS. In his spare

time, Alex can often be found putting on shows at his local theater, or out and about on

his bike (and with his camera).

xv

About the Technical Reviewer

Zach Inglis is a web design and developer hybrid. He started

teaching himself design and programming 19 years ago

and hasn’t looked back since. As one-half of design agency

Superhero Studios (http://www.superhero-studios.com),

Zach takes care of web and print design, branding, and

business strategy for a wide range of large and small clients.

Zach was also co-organizer of HybridConf, an inclusive

conference dedicated to bridging the gap between design

and development.  

http://www.superhero-studios.com/

xvii

Acknowledgments

Writing a book can be a long but rewarding process; it is not possible to complete it

without the help of other people. I would like to offer a huge vote of thanks to my editors,

but in particular Nancy Chen and Louise Corrigan, and with Zach Inglis as technical

reviewer – all three have made writing this book for Apress a painless and enjoyable

process, even with all of the edits!

My thanks also to my family for being so understanding and supporting me while

writing – it requires a lot of late nights alone, so their words of encouragement (and also

from Nancy and Louise) have been a real help in getting to the end and producing the

finished result that you now have in your hands.

xix

Introduction

Beginning SVG is for people who want to learn how to create and manipulate SVG

content in the browser quickly, natively, or by using third-party tools such as Snap.js.

Originally released back in 2001, it has only gained real-world acceptance within

the last few years, as an easy-to-edit, convenient format for displaying scalable content

without loss of quality. Over the course of this book, I’ll take you on a journey through

using the format, showing you how easy it is to create and edit reusable shapes and text,

using the format. We’ll cover such diverse topics as animating content, creating custom

filters, optimizing it for efficiency – right through to some real-world examples that you

can use as a basis for future projects. This book will provide you will a solid grounding in

using SVG as a format, with lots of simple exercises to help you develop your skills using

SVG as a format.

Beginning SVG is for the website developer who is keen to learn how to use SVG to

quickly produce dynamic visual effects in the browser, without the need to use or learn

packages such as Adobe Illustrator. It’s ideal for those in Agile development teams,

where time is of the essence, and the pressure is on to deliver results rapidly. It’s perfect

for those developers who want to focus on producing great effects or content but who

don’t want to have to rely on using lots of external resources, or others to style content

such as images when it can easily be done in the browser.

Getting Started

PART I

3
© Alex Libby 2018
A. Libby, Beginning SVG, https://doi.org/10.1007/978-1-4842-3760-1_1

CHAPTER 1

Introducing SVG
Let me start with a question – which image format should I use: bitmap or vector,

PNGs, JPEGs…?

If you spend any time developing content for the web, then I am sure you’ve asked

yourself this question countless times: there is a whole array of different formats that we

can use, all of which have their own particular qualities! There isn’t a single image format

that is ideally suited to the web, which encompasses the best qualities of all image types,

although Google has tried to push this with the WebP format, which hasn’t received

widespread adoption among other browser providers.

In many cases, I suspect that either JPEG or PNG images would be favored; these are

perfect for complex images where detail is essential (such as photographs). However, if

you need to display clear line drawings, or 2D images, for example, then these formats

aren’t ideal. There are several reasons why, but one of the key weaknesses is maintaining

quality – try resizing a schematic saved as a PNG, and the quality soon becomes very

poor! There has to be a better way surely…?

Indeed there is – let me introduce you to the world of SVG, or Scalable Vector Graphics.

Some people might associate them with applications such as Adobe Illustrator – it’s a

perfectly valid assumption; Illustrator is a market-leading product, even if it is something

of a heavyweight application. However, there is a whole lot more to working with SVG

images – over the course of this book, we’ll see how easy it is to manipulate them using

nothing more than just a text editor and a browser. There’s lots to cover, so without further

ado, let’s make a start on exploring the benefits of using SVG images in our projects.

�The Benefits of Using SVG
For anyone working with a new format for the first time, I am sure there will be one

overriding question – what makes it so special? What makes this such a useful format

to learn?

4

There are several good reasons for exploring SVG as a format – it is not intended as

a replacement for JPEG or PNG images; the formats work in different ways. SVG as a

format really shines when used to display vector images on the web:

•	 SVG-based images do not lose quality when they are resized or

zoomed in the browser;

•	 SVG images can be animated using JavaScript or CSS;

•	 SVG images integrate with the DOM very well, and they can be

manipulated using JavaScript or CSS;

•	 SVG images can be indexed by search engines, which is perfect for

SEO purposes;

•	 SVG images can be printed at any resolution.

This means we can create some really powerful designs that can be easily

manipulated and which scale well. The question is – how do SVG graphics manage to

retain such a level of clarity, compared to images that lose quality as soon as you try to

resize them?

Well, I’ll let you into a little secret: SVG images are not images. Yes, you heard me

right – they are indeed not images! Instead, we’re working with XML; to see what I mean,

go ahead and view the kiwi.svg image that is in the code download that accompanies

this book, in a browser. If you take a look at the source, you’ll see something akin to the

extract shown in Figure 1-1.

Figure 1-1.  Source code for an SVG image

Chapter 1 Introducing SVG

5

It looks scary, but in reality, the numbers are just coordinates that trace the outline

of the image (in this case a kiwi bird). Don’t worry – you won’t be expected to write code

like that; instead, we would add an SVG image using the standard image tag:

We can see the result as illustrated in Figure 1-2.

Figure 1-2.  An SVG image of a kiwi bird

Clearly far easier to use and understand! It’s important to get an understanding of

what to expect though, as we can manipulate the contents of any SVG image (more on

this later in the book).

For now, let’s try a simple change, using the kiwi bird image.

CHANGING A COLOR IN AN SVG IMAGE

	1.	G o ahead and open up a copy of the kiwi image in a text editor.

	2.	 Look for this line of code, on or around line 7:

<ellipse fill="#C6C6C6" cx="283.5" cy="487.5" rx="259" ry="80"/>

	3.	G o ahead and change the color to a different HEX value – I’ve picked a random

purple, using #834DCF;

	4.	 Save the file, then preview the results in a browser – if all is well, you should

see something akin to the screenshot shown in Figure 1-3.

Chapter 1 Introducing SVG

6

Figure 1-3.  Updated image of a kiwi bird

See how easy it was? Yes, the code may look archaic, but don’t worry – as we go

through some of the elements in more detail throughout this book, things will become

clearer and easier to understand.

Try running through the steps again, but this time choose different colors – you
will see that the image is updated but will also retain the same level of clarity
throughout.

Okay – let’s change tack: now that we’ve completed our first edit, it’s time we took a

look at how the SVG format stacks up against other image formats and see why there are

occasions where SVG images will give a superior result compared to standard images.

�Comparing Formats
When working on the web, we have a number of image formats we can choose from to

display visual content. In many cases, it’s likely that JPEG or PNG will be selected – these

formats represent the best choice for size and support in today’s modern browsers,

when working with photo-based imagery. However, in a world where websites must be

accessible on different devices, these formats do not scale well if we need to use

line-based drawings; we’ve already covered how SVG can help in this respect.

Chapter 1 Introducing SVG

7

To really understand how it can benefit us, it’s worth taking a moment to see how

the format compares to standard images; the key benefit is the ability to manipulate, but

there are other reasons why SVG should be considered as a format:

•	 Resolution independence – with many image formats, we might have

to download extra data or assets to fix resolution-based issues. A

great example is when using retina screens, which require us to apply

a @2x hack to force higher-resolution images to be displayed. This

isn’t the case with SVG images; these can be fully resized, irrespective

of device or resolution used, and without the need for additional tags.

•	 Accessible DOM API – SVG elements can be manipulated using

nothing more than standard JavaScript or CSS; this could be as

simple as changing colors (as we saw back in the exercise “Changing

a Color in an SVG Image”) or as complicated as attaching event

handlers to perform specific events.

•	 No unnecessary HTTP requests – unlike standard images, SVG

images are created using XML and CSS. This avoids the need for the

browser to request an image from the server, making it faster and

more user friendly.

•	 Content can be indexed, scaled, searched, scripted, and compressed.

•	 We can create images using nothing more than a text editor – yes,

it might be easier to create them in a suitable graphics application.

However, let us not forget that the key principle I outlined earlier:

Why download and install a graphics package if we can achieve the

same result in a text editor that we already have?

With this in mind, it’s worth summarizing what we should use SVG for – in summary,

they are perfect where we need:

•	 Logos and icon with strong, geometric, vector-friendly designs;

•	 Graphics that need to be displayed in multiple sizes and screens;

•	 Graphics that respond to their device;

•	 Graphics that need to be edited, updated, and redeployed.

Chapter 1 Introducing SVG

8

In comparison (and as a reminder), we can see how this stacks up against other

image formats, as outlined in Table 1-1.

Table 1-1.  Comparison of Image Formats and Their Uses

Category Palette Used for

JPG / JPEG Lossy Millions of colors Still Images, Photography

GIF Lossless Maximum 256 colors Simple animationsGraphics with flat

colorsGraphics without gradients

PNG-8 Lossless Maximum 256 colors Similar to GIFBetter transparency but

no animationGreat for icons

PNG-24 Lossless Unlimited colors Similar to PNG-8Handles still images and

transparency

SVG Vector/lossless Unlimited colors Graphics/logos for webRetina/high-dpi

screens

WebP Lossless Unlimited colors Similar to PNGs, but typically 26%

smaller in size – take-up isn’t so

extensive, with only Chrome and Opera

supporting the format at present

Note  Lossy images do not retain all of the data in an image, particularly when
converted to JPEG; other formats retain data (i.e., are lossless), but do not offer
capabilities such as built-in animation or clear scalability.

Okay – enough theory, methinks! Let’s move swiftly on, and turn our attention to

more practical matters.

We’re at the point where we need to ensure we have the right tools in place – some of

you may think this requires an array of different applications to be set up: as some might

say, not if we can help it! True, there are some tools we can install if we decide to develop

more advanced solutions, but for now, there is very little that we need to install. Let’s

take a look at what we do need, in more detail.

Chapter 1 Introducing SVG

9

�Setting Up a Working Environment
Now that we’ve been introduced to the SVG format, it’s time to get stuck into developing

code! We’ve already run through a basic edit using nothing more than a text editor;

there are a few more tools we will need, though, in order to complete the exercises in

this book.

Before we touch on what we need, there is a key principle I want to share: where

possible, we will try to avoid downloading extra tools, and make use of what we

already have available in our working environment. There’s a good reason for taking

this approach – I’m a great believer in keeping things simple, and not introducing

extra tools unless they are needed. There is a trade-off in taking this approach, where

some tasks may not immediately be possible, but hopefully we can keep this to a

minimum!

With this in mind, let’s take a look at the tools we need to avail ourselves of, to

help set up our working environment. I suspect many of you will already have suitable

alternatives in place, so feel free to skip steps if this is the case:

•	 We need a decent text editor – there are dozens available online. My

personal preference is Sublime Text 3 (available from http://www.

sublimetext.com/3), although feel free to substitute if you already

have a favored editor.

•	 We will make use of Node.js later in the book – this is to automate

some of the more menial tasks such as optimizing our images.

This can be downloaded from https://nodejs.org/en/ –

you can use default settings where prompted during the

installation.

•	 We need to create a folder for our code – for the purposes of this

book, I will assume it is called svgbook; please alter accordingly if

yours is different.

•	 In our project folder, we need to add a couple of extra folders – go

ahead and create one called css, and another called font; both

should be at the same root level.

Chapter 1 Introducing SVG

http://www.sublimetext.com/3
http://www.sublimetext.com/3
https://nodejs.org/en/

10

•	 An optional extra is to download a font for our demos, to provide a

little styling – we’ll make use of PT Sans from FontSquirrel, available

at https://www.fontsquirrel.com/fonts/pt-sans. Feel free to

skip this step if you want to – the demos will work perfectly fine

without it.

•	 Last, but by no means least, we need to stock up on SVG images that

we can use (I would suggest that around six should be sufficient).

There are dozens available on the Internet – here are a few links you

can try, to help get you started:

•	 https://www.freesvgimages.com/

•	 https://www.flaticon.com/

•	 https://pixabay.com/en/

•	 http://svgstock.com/

Note  Where possible, I have included relevant source images in the code
download; if this hasn’t been possible, it will be noted in the text.

Hopefully you’ve managed to get everything set up, or have suitable tools in

place – the key here is that we don’t need anything complex when working with

SVG images; it’s all about simplicity, and working with what works best for your

development environment.

�Support for SVG
Okay – we’ve been introduced to SVG as a format, have tools in place, and touched on a

basic edit of an existing image; what next? Ah yes – browser support!

SVG as a format has been available since 1999, although it is only in the last

few years has it garnered support in recent browsers. A quick check on the

CanIUse.com site (http://caniuse.com/#search=SVG) shows that most browsers

support the format (as shown in Figure 1-4), although IE / Edge struggle to scale files

correctly:

Chapter 1 Introducing SVG

https://www.fontsquirrel.com/fonts/pt-sans
https://www.freesvgimages.com/
https://www.flaticon.com/
https://pixabay.com/en/
http://svgstock.com/
http://caniuse.com
http://caniuse.com/#search=SVG

11

The only real concern we may have as developers is if we still have to develop for

IE8 or older; the SVG format is not supported, so a fallback alternative will need to be

used such as PNG images. Hopefully this isn’t too much of an issue, as usage for IE8 is

currently less than 1% – this will be one less headache when support for this browser is

finally killed off!

In this age of portability, we must equally consider mobile devices – thankfully

support for them is just as broad as for desktops, as indicated in Figure 1-5.

Figure 1-4.  Desktop support for SVG

Figure 1-5.  Mobile support for SVG

In short, support is widespread for most devices – where you might come unstuck

is if you are still using anything older than Android 2.3, which doesn’t support SVG as

a format. This was introduced (in part) from 2.3 onwards, with more recent versions

offering full support for the format.

Chapter 1 Introducing SVG

12

�Creating a Basic Example
So far we’ve explored some of the theory and possible uses for the SVG format – it’s time

we stopped talking, and got stuck into writing some code! Over the next couple of pages,

we will knock up a really simple example; this will provide a taster of what to expect in

Chapter 2, where we will look at some more in-depth examples. Let’s explore what is

involved in more detail, to add a basic SVG image to a web page:

CREATING A BASIC EXAMPLE

	1.	 We’ll start by opening a new file, then adding the following code, saving it as

simpleexample.html in our project folder:

<!DOCTYPE html>

<html>

<head>

 <meta charset="utf-8">

 <title>Beginning SVG: Creating a simple example</title>

</head>

<body>

 <h2>Beginning SVG: A Simple Example</h2>

 <link rel="stylesheet" href="css/simpleexample.css">

</body>

</html>

	2.	 Before the closing </body> tag, go ahead and add this code block:

<svg>

 <circle cx="60" cy="60" r="50" stroke="black" stroke-width="5"

fill="silver"/>

</svg>

	3.	T he keen-eyed among you will spot that we’ve referenced a style sheet – for

this, go ahead and copy the font file from the code download that accompanies

this book, and save it into our project’s font folder.

Chapter 1 Introducing SVG

13

	4.	 In a new file, add the following code:

@font-face { font-family: 'pt_sansregular'; src: url('../font/

pt_sansregular.woff') format('woff'); font-weight: normal;

font-style: normal;}

body { font-family: 'pt_sansregular', sans-serif; padding: 2rem;

}

circle { stroke: #000000; stroke-width: 4; fill: #cdc7c7; }

	5.	 Save this as simpleexample.css in the css subfolder we’ve just created in

the previous step.

	6.	 We can now preview the results in a browser – if all is well, we should see

something akin to the screenshot shown in Figure 1-6.

Figure 1-6.  A simple example of an SVG shape

See how easy it is? Granted, this was a very simple example, but it proves that we

only needed to use a standard text editor, with no graphics package in sight. The gray

and black colors used were purely for the purposes of viewing the results in print, but we

could easily have used different colors – this is limited only by your imagination. The key

here is to understand how it works: let’s take a quick look in more detail.

Chapter 1 Introducing SVG

14

�Understanding How It Works
At face value, our demo looks very simple – underneath though, it hides a few key

principles that control how SVG images are displayed onscreen. Let’s summarize each of

these in turn for now – throughout the course of this book, we will explore these in more

detail:

•	 The SVG viewport – this controls the size of the window, through

which we may view a particular SVG element;

•	 We can restrict this by specifying a viewbox attribute – whereas the

viewport can be enormous, the viewbox limits the extent of what

we see.

In many cases, these two will be aligned – they work in a similar fashion to Google

Maps, where we can zoom into a specific region. The visible, scaled-up area will be

restricted to this region; the rest of it is still available but will be hidden as it sits outside

of the boundaries of the viewport area.

Keeping this in mind, our code works on the basis of referencing a coordinate

or grid system – it works in a similar fashion to many instances where we might draw

elements, such as when using HTML5 Canvas. This means that point (0,0), or the point
of origin, is considered to be the top left corner of our viewport (assuming both it and

the viewbox are aligned), as indicated in Figure 1-7.

Figure 1-7.  Schematic of SVG coordinate grid

Chapter 1 Introducing SVG

15

So how does this work for our circle? If we examine our code as rendered in the

browser (shown in Figure 1-8), we see this:

The cx and cy values indicate how far across to render the circle, with the r value

controlling its radius. So, to translate our code into plain English, it will be rendered 60

units to the right (from top left), and 60 units down. The r value controls how big our

circle will appear on screen – it goes without saying that the higher the number, the

larger the circle!

One thing we must note – many values you will see in SVGs are often rendered
with or without unit identifiers. If units have not been specified, then the value is
assumed to be equivalent to the same value in pixels.

�Adding Fallback Support
Our example is very straightforward, and will work in all recent browsers from the last

two to three years. However, it won’t work in old browsers such as IE8 – if we’re working

with a (in this case relatively) new format, how would we provide fallback support?

This opens up a real can of worms – should one offer support? Or should we set the

experience to degrade gracefully? How about displaying an alternative in PNG format,

for example?

Figure 1-8.  The code for our SVG circle example

Chapter 1 Introducing SVG

16

In this instance, there are several questions one must ask – these are all designed to

help identify if fallback support is really necessary, or if an alternative must be provided.

Let’s take a look at some of the questions one might ask:

•	 The most important question is – how many visitors might this

affect? If the analytics for our site shows a really small number, then

we might decide to simply do nothing. This may seem harsh, but it

is important to weigh up the economic benefits of implementing a

solution, if we’re only doing it for a small number of people. If that

small number brings in a substantial amount of revenue though, then

yes, we may be obligated to implement a solution!

•	 If the SVG content is merely a text label that can be displayed using

an alt tag instead, then we may decide to do away with support; if

necessary, we can add in standard CSS to provide some background

styling instead.

•	 Should we degrade the experience gracefully, to encourage users to

update browsers to more recent versions? This isn’t always possible –

some companies may require the use of older browsers for security

reasons, which will have an impact on whether we can provide such a

graceful exit.

•	 Do our processes allow for the automatic production of images in

different formats? This might seem a little odd to ask, but if we can

automate this process, then it reduces the manual effort required and

makes implementing a solution easier.

•	 We might consider implementing a solution whereby any image link

automatically includes the same image in two formats – if we happen

to use a browser that doesn’t support SVG, then it will automatically

fall back to using the alternative format. The downside of this is that

we may end up with some browsers downloading multiple versions

of the same image, which has potential resource considerations.

If we do have to provide fallback support, then we have a number of options

available to us, such as using background images or adding the code inline to our

application. Each has its own merits, so let’s take a look at some of these in more detail.

Chapter 1 Introducing SVG

17

�Types of Fallback
If we’ve determined that providing a fallback solution is essential for our project, then we

must stop and think what kind of feedback we should provide. This can take any one of

four different options – these are:

•	 No feedback – we’ve already touched on this, but if the content is

visible without the SVG image (through an alt tag, for example) then

we may find that a fallback isn’t necessary.

•	 Text fallback – if we have an image or icon where an alternative text

label could be used, then we should consider adding suitable text

through the image’s alt tag.

•	 Image fallback – in many cases, developers are likely to use this route

when providing a fallback; a PNG or GIF image will work, but with the

consequential trade-off in increased file sizes and poorer resolution.

•	 Interactive fallback – if we have to replace an interactive SVG, a

PNG isn’t likely to do it justice; we may have to resort to rewriting

code using a library such as Raphaël (http://dmitrybaranovskiy.

github.io/raphael/). It’s an option to bear in mind, although

working through it in detail will fall outside of the scope of this book

This leaves us with two viable options for implementing a fallback for any SVG image

we use, namely text and image. What does this mean in practice? Well, let’s take a look at

the options:

�Implementing a Fallback Image
With the wide support of SVG in recent browsers (certainly within the last two to three

years), there should be little need for a fallback – in most cases, we can simply insert

an SVG graphic in the same way as we would do for an image. If we had to swap out an

image for a PNG equivalent, then we can use the <picture> tag, which not only swaps

out the image, but can handle different fallbacks, based on what is in use:

<picture>

 <source type="image/svg+xml" srcset="image.svg">

</picture>

Chapter 1 Introducing SVG

http://dmitrybaranovskiy.github.io/raphael/
http://dmitrybaranovskiy.github.io/raphael/

18

If we had to resort to JavaScript, then this nifty one-liner works very well:

The downside of using the JavaScript approach means we trigger multiple

(unnecessary) requests for images that are not supported; we also have to use some

workarounds to ensure images are displayed to the correct scale on screen.

�Adding SVGs as Background Images
Instead of implementing SVGs as images using the tag, we can make use of CSS

error handling to correctly identify which image to display, if using older browsers:

body {

 background: url(fallback.png);

 background: url(background.svg), linear-gradient(

transparent, transparent);

}

If a browser supports multiple backgrounds, it will support SVG and therefore use

the latter option; for those browsers that only support one background, the first url(...)

value will be used, and the rest of the rule will be ignored.

It’s worth noting that we could use <object> or <embed> to add SVG images,
but this route has fallen out of favor – the near universal support of SVG makes
this redundant for most browsers. If it has to be used, then it should be reserved
for older browsers such as IE8 that do not support it natively without plug-in
support.

�Managing Inline Support
Although some might prefer the options we’ve just covered (for their concise approach),

adding SVG images inline remains the most popular – it gives us the most flexibility in

terms of controlling style and content using CSS and JavaScript.

However we lose the ability for a browser to simply ignore SVG content and treat

it as HTML if it does not support the format – to work around this, one approach

Chapter 1 Introducing SVG

19

might be to simply include plain text within our SVG element, as highlighted in this

(partial) example, where we can see fallback text has been added at the start of an

SVG graphic:

<svg>

 <!--Text fallback-->

 I'm sorry, your browser does not support SVG images

 <circle fill="darkgrey" r="30" />

 <path stroke="forestgreen" ... />

 <!--Fallback with links-->

 Some link text.

</svg>

This works very well, using the principle that if the SVG format isn’t supported, then

code will either be ignored or treated as plain HTML. This means that in our example,

the plain text included at the start of the SVG will be displayed, along with the fallback

link at the end.

Note that the text within <text> tags will not be displayed in a fallback – this is
considered invalid by older browsers so will equally be ignored.

We can also develop our example to use either the SVG <desc> or <use> tags; for more

details on how, I would recommend checking out the article on CSS Tricks by Amelia

Bellamy-Royds at https://css-tricks.com/a-complete-guide-to-svg-fallbacks/. It’s

a couple of years old but still contains some useful tips! It’s worth noting that we may also

need to use JavaScript to test for support – the Modernizr library contains a neat example

of how, although we can equally test using plain vanilla JavaScript.

The self-styled web spinner, Taylor Hunt, also has an intriguing article on the use
of the SVG <switch> statement; this effectively uses the same principle, but
varies content based on matching conditions. You can see the details on Codepen
at https://codepen.io/tigt/post/inline-svg-fallback-without-
javascript-take-2.

Chapter 1 Introducing SVG

https://css-tricks.com/a-complete-guide-to-svg-fallbacks/
https://codepen.io/tigt/post/inline-svg-fallback-without-javascript-take-2
https://codepen.io/tigt/post/inline-svg-fallback-without-javascript-take-2

20

There is one more area we should cover – the SVG format is perfect for creating and

managing icons. It’s essential that we maintain an equally efficient fallback if we have to

work on older browsers; this means simply switching formats within an tag may

not work so well. Let’s round out our coverage of providing fallback support, by briefly

covering the options available to us, when setting up a fallback for icons.

�Supporting an Icon System
When adding images to a page, we clearly have to be careful about sizes, quantities, location

and such – I need hardly say that poorly sized images will kill page speed! To help with this,

we might decide to use sprites, particularly when using icons – combining multiple images

into one sprite will indeed reduce requests for resources. The SVG format is perfectly suited

to creating sprites – question is, how should we provide a fallback for them?

Any fallback solution needs to be equally as efficient as the sprite it is

replacing – simply adding in single images would be a poor replacement for a sprite.

To this end, there are a couple of avenues we can consider:

•	 We could simply use background images as fallback support, but

these would need to be CSS sprites so we can maintain a “one request

per image sprite” approach.

•	 An alternative might be to use an icon font as a fallback. We will need to

provide an empty element, but support for @font-face in older browsers

is more extensive than SVG, so might be a useful option to take.

•	 We could automate Use Grunticon (available at http://www.

grunticon.com/), which starts with an empty element and

progressively enhances up to SVG, while handling fallbacks

(through a JavaScript test). We’ll work on the concept of automating

icon support for SVG in more detail, in Chapter 3, “Working with

Images and Text.”

Ultimately, it’s up to us as developers to decide the most appropriate route to

take – this will depend on the level of fallback support we need to provide, and whether

we can reduce this by designing out those areas that will give cause for concern in older

browsers.

Chapter 1 Introducing SVG

http://www.grunticon.com/
http://www.grunticon.com/

21

We’ve covered a number of options available for maintaining fallback
support – part of this will also entail optimizing content to ensure we make
it accessible to older browsers. We’ll cover this in more detail in Chapter 7,
“Optimizing SVG.”

�Summary
The discovery of, and getting to grips with, a new technology opens up a world of

possibilities when developing our projects – let’s take a moment to explore what we’ve

covered through the course of this chapter.

We kicked off our journey into the world of SVG with a gentle introduction to the

format, to explore some of the benefits of using this format, and to see how it stacks

up against other image formats. We then worked our way through a quick example

of changing the color in part of an SVG image – this was to show that although we are

working with XML code, it is still very easy to alter an image.

Next up came a look at setting up our working environment – we covered how we

only need a minimal toolset to work with SVG, and that some of the tools we will use are

optional extras, depending on our project requirements.

We then switched to exploring browser support for SVG images – we explored how

most modern browsers will support this format natively, and that in the worked example,

we can simply use an image tag to insert SVG images into the page without a problem.

We also touched briefly on the SVG viewport and viewbox, to understand how these play

a pivotal role in positioning SVGs on the page.

We then rounded out the first part of our adventure with a look at providing fallback

support for the format. In many cases, we explored how this shouldn’t be necessary, but

in the event it is, we examined a few tips we can use to either degrade the experience

gracefully, or provide an alternative on the page.

Phew – we’ve covered a lot, but we’re just getting started! The next stage in our

process is to understand how we can add shapes (both basic and more complex) to the

page; we’ll explore this and more in the next chapter.

Chapter 1 Introducing SVG

23
© Alex Libby 2018
A. Libby, Beginning SVG, https://doi.org/10.1007/978-1-4842-3760-1_2

CHAPTER 2

Adding SVG Content
to a Page

Life is full of shapes. Square, round, oblong – it doesn’t matter what:
it’s still a shape.

I don’t know if there was someone famous who came up with that erudite comment, but

it can equally apply to SVG images – even though we can create some intricate designs,

at their core each will be made up of individual shapes.

These shapes might be any one of eight different types: we can create squares,

rectangles, circles, ellipses, lines, polylines, polygons and paths, which when put

together will form our final design. If we cast our minds back to the exercise we worked

through in Chapter 1, “Introducing SVG”, we created a simple circle with a silver color

used to fill the center:

<svg>

 �<circle cx="60" cy="60" r="50" stroke="black" stroke-width="5"

fill="silver"/>

</svg>

This simple one-liner (for the purposes of this code I’m excluding the <svg> tags,

which have to be present anyway), is all that is required to create a circle. Question is – is

it that easy to create the other basic shapes?

Well, thankfully it is – with the exception of the multipoint shapes (polygons,

polylines, and paths), it’s a cinch to create these basic shapes, so let’s dive in and take a

look at the code to produce each one in turn.

24

�Implementing SVG Shapes
When working with SVG images, there are a number of basic shapes available for us to

use – the purpose of many of these will be obvious from their names, although some less

so! In all cases they are designed to help make it easier to read our code and ultimately

keep the SVG documents as short as possible (avoiding duplication where practical).

Any shape we implement will be as an element – we touched on the different options

for adding these to a page back in Chapter 1. Each has its own merits; for convenience

we will add ours using the inline method, so that we can then manipulate them using

standard CSS styling methods.

Do not feel constrained to use just one method when adding SVG images – most
of the ones we touched on in Chapter 1 can be used, but some (such as iframe or
embed) should be avoided if possible!

Enough talking – let’s make a start and explore the shapes we can use, starting with

the humble square and rectangle.

�Creating Squares and Rectangles
The first of the basic shapes we will take a look at is the humble square (and it’s cousin,

the rectangle) – as someone once said, everything is made up of building blocks, so it

seems only sensible to start with these two shapes!

The code to create both shapes is very straightforward, so without further ado, let’s

get cracking on our first exercise of this chapter:

CREATING SQUARES AND RECTANGLES

	1.	 Let’s begin by adding the following code to a new document, saving it as

squares.html at the root of our project folder:

<!DOCTYPE html>

<html>

<head>

 <meta charset="utf-8">

Chapter 2 Adding SVG Content to a Page

25

 <title>Beginning SVG: Creating a simple example</title>

 <link rel="stylesheet" href="css/squares.css">

</head>

<body>

</body>

</html>

	2.	N ext, we’re going to provide a little styling – in a new file, add the following

code, saving it as squares.css in the css subfolder of our project area:

@font-face {

 font-family: 'pt_sansregular';

 src: url('../font/pt_sansregular.woff') format('woff');

 font-weight: normal;

 font-style: normal;

}

body { font-family: 'pt_sansregular', sans-serif; padding: 2rem; }

span { width: 200px; vertical-align: top; }

svg { display: inline-block; height: 200px; padding-top: 20px; }

#squareID, #rectangleID { margin-left: -125px; }

	3.	I n between the <body> tags, go ahead and add the following code:

 <h2>Beginning SVG: Drawing Squares and Rectangles</h2>

 <link rel="stylesheet" href="css/squares.css">

 Adding a square:

 <svg id="squareID">

 �<rect x="10" y="10" width="100" height="100" stroke="darkgrey"

fill="transparent" stroke-width="5"/>

 </svg>

 Adding a rectangle

 <svg id="rectangleID">

 �<rect x="10" y="10" width="150" height="100" stroke="grey"

fill="transparent" stroke-width="5"/>

 </svg>

	4.	 Save this file, then go ahead and view the results in a browser – if all is well,

we should see something akin to the screenshot shown in Figure 2-1.

Chapter 2 Adding SVG Content to a Page

26

See how easy that was? Creating simple SVG images is very straightforward – after all,

our code uses standard HTML formatting, so there is no need to learn a specialist syntax

when creating our images. The code, however, does introduce us to some unfamiliar

keywords, so let’s pause for a moment and take a look at these in more detail.

�Understanding How the Code Works

At this point, some of you may be wondering why, if we look at the code closely, we

appear to have two <rect> elements in use, when we clearly can see a square and

rectangle on screen!

The truth is that although both clearly look different, they use the same element; this

means they can share the same properties. If, for example, we were creating a square,

then the values for width and height would be identical, as shown in our example – these

would be different if we wanted to create a rectangle:

<svg id="squareID">

 �<rect x="10" y="10" width="100" height="100" stroke="darkgrey"

fill="transparent" stroke-width="5"/>

</svg>

We start with the standard <svg> tags to define our element – you will see these in

use whenever you create an SVG image. Next, we have our <rect> element, which has

a number of defined attributes that govern its size, position (x and y), fill color, and

thickness (or stroke-width) of the border.

Figure 2-1.  Drawing squares and rectangles

Chapter 2 Adding SVG Content to a Page

27

The key to this shape (and any other) is in the positioning – each shape is positioned

using a defined grid position (as we touched on back in Chapter 1), where the top left

corner of our viewport is point 0, 0. In our example, our boxes (although it isn’t

displayed as such in print), are displayed 10 pixels to the right and 10 pixels down,

from point zero.

We will touch on stroke, stroke-width, and fill in more detail later in this chapter in
the section “Painting elements.”

We then simply pass suitable values for both width and height – the radius values are

omitted, as we don’t want curved corners on our shapes. These attributes are listed in

full in Table 2-1.

The remaining basic shapes are as straightforward to create, so let’s continue with

this theme, and take a look at how we can create SVG circles and ellipses.

�Drawing Circles and Ellipses
The second basic shape we will now look at is the circle (and its cousin, the ellipse) –

this kind of reminds me of the phrase “to be thrown a curveball.” I don’t know why, only

except to say that there are no hazards to watch for when creating these shapes!

Table 2-1.  Attribute Properties for Rectangles

Attribute Purpose

x The x position of the top left corner of the rectangle.

y The y position of the top left corner of the rectangle.

width The width of the rectangle.

height The height of the rectangle.

rx The x radius of the corners of the rectangle.

ry The y radius of the corners of the rectangle.

Chapter 2 Adding SVG Content to a Page

28

The code to create both shapes is very straightforward, so without further ado, let’s

get cracking on the next exercise of this chapter:

CREATING CIRCLES AND ELLIPSES

Much of the code that we need to use is already in place, so to make it easier, we can simply

take a copy of the previous CSS and HTML files, then adjust as necessary:

	1.	 We’ll begin by taking a copy of squares.html, then renaming it as

circles.html – go ahead and replace the code between the <body> tags

with this:

<h2>Beginning SVG: Drawing Circles and Ellipses</h2>

Adding a circle:

<svg id="circleID">

 <�circle cx="60" cy="65" r="55" stroke="black" fill="transparent"

stroke-width="5"/>

</svg>

Adding an ellipse:

<svg id="ellipseID">

 �<ellipse cx="75" cy="75" rx="70" ry="50" stroke="#a6a6a6"

fill="transparent" stroke-width="5"/>

</svg>

	2.	 Go ahead and change the CSS style sheet link from squares.css to

circles.css:

<link rel="stylesheet" href="css/circles.css">

	3.	N ext, take a copy of the squares.css file, then rename it as circles.css –

remove the last rule, and replace it with this:

#circleID, #ellipseID { margin-left: -125px; }

	4.	 Save the contents of both files, then go ahead and fire up circles.html

in a browser: if all is well, we should see two circular shapes, as indicated

in Figure 2-2.

Chapter 2 Adding SVG Content to a Page

29

See how easy it is to create basic circular elements using SVG? There is very little

different when compared to creating a square or rectangle – we use the same format

of code, although some of the attributes will be different. Let’s pause for a moment to

review how our code works, and these attributes, in more detail.

�Exploring How the Code Works

If we take a close look at the code we’ve just created, we can start to see some similarities –

both to what we’ve just created in the previous exercise, and between how the circle and

ellipse are created.

For example, we can use the same stroke, fill and stroke-width attributes as

before – these have not changed. What is of more interest to us though are the attributes

for sizing each element – both use the same cx and cy values to define the starting

position of the circle. Unlike the circle where the radius is evenly defined (using the r

value), an ellipse is clearly wider than it is taller – for this, we need to use the rx and ry

values to define its size, as outlined in Table 2-2.

Figure 2-2.  Drawing circles and ellipses

Table 2-2.  Attribute Properties for Circles and Ellipses

Attribute Purpose

r The radius of the circle.

cx The x position of the center of the circle.

cy The y position of the center of the circle.

rx The x radius of the ellipse.

ry The y radius of the ellipse.

Chapter 2 Adding SVG Content to a Page

30

To put this in context of our example, our circle starts at point 60, 65 and has a

radius value of 55. The ellipse is a little wider, so we must allow for this in our example –

it starts at position 75,75: it has a x radius value of 70 and y radius value of 50. Note

though that these values are from the center of the shape outwards; multiply both values

by 2, to get the true size of the ellipse.

Okay – let’s change tack: not every shape we need to create will be a simple square or

circle; what about creating multisided shapes, for example? Thankfully it’s just as easy to

create these shapes, so let’s dive in and take a look.

�Drawing Lines, Polylines, and Polygons
At its heart, every SVG shape we create is made up of individual lines – I need hardly say

that each goes from point A to B!

Okay – I confess: I am stating the obvious but with good reason. This next bunch

of shapes relies on using this principle to work, so understanding which pair of values

relates to which point in a shape is key to manipulating how they appear on the page.

To see what I mean, let’s dive in and create our next three shapes – a line, polyline, and

polygon – as part of our next exercise.

DRAWING LINES, POLYLINES, AND POLYGONS

As in previous exercises, much of the code that we need to use is already in place, so to

make it easier, we can simply take a copy of the previous CSS and HTML files, then adjust as

necessary:

	1.	 We’ll begin by taking a copy of squares.html, then renaming it as lines.

html – go ahead and replace the code between the <body> tags with this:

<h2>Beginning SVG: Drawing Lines, Polylines and Polygons</h2>

Adding a line:

<svg id="lineID">

 <�line x1 = "20" y1 = "20" x2 = "175" y2 = "180" stroke = "black"

stroke-width = "3"/>

</svg>

Adding an polyline:

<svg id="polylineID">

Chapter 2 Adding SVG Content to a Page

31

 <�polyline points = "20,20 40,25 60,40 80,120 120,140 200,180"

fill = "none" stroke = "black" stroke-width = "3"/>

</svg>

Adding an polygon:

<svg id="polygonID">

 <�polygon points = "60,10 140,10 190,70 190,130 140,190 70,190 10,

130 10,70" fill = "gainsboro" stroke = "black" stroke-width = "3"/>

</svg>

	2.	N ext, go ahead and replace the link to lines.css at line 6, with this:

<link rel="stylesheet" href="css/lines.css">

	3.	N ow take a copy of the lines.css file, then rename it as circles.css –

remove the last rule, and replace it with this:

#lineID, #polylineID, #polygonID {

 margin-left: -116px;

}

	4.	 Save the contents of both files, then go ahead and fire up lines.html in a

browser: if all is well, we should see three line shapes, as indicated in Figure 2-3.

By now, some of the terms we’ve used should start to be a little more familiar – such

as stroke, fill, and stroke-width. We will cover these shortly, but for now it’s more

important to understand how we’ve constructed our shapes, so let’s dive in and take a

look at our code in more detail.

Figure 2-3.  Drawing lines, polylines, and polygons

Chapter 2 Adding SVG Content to a Page

32

�Exploring How the Code Works

Creating polyline (or for that matter, polygon) shapes can be something of a paradox – the

code may look more complicated, but in reality it is simpler, as we have fewer attributes

that need to be configured. Those that do need to be configured are listed in Table 2-3.

If we take a look at our code examples, we can see the first two sets of attributes in

use within the line example – these simply use the SVG grid position system to locate the

starting and finishing points within our view port: x1 = "20" y1 = "20" x2 = "175"

y2 = "180".

A little further down, the points attribute comes into play – again, we specify our

coordinates using the x, y format. So for example, the starting point for our octagon is

60, 10, or 60 units in from top left, and 10 down. We then continue all the way round the

shape, providing suitable coordinates to complete our shape.

Okay – let’s change tack: we have one final set of shapes to explore; these open up

a wealth of possibilities, although they will take a little more work to come to grips with

how they can be configured! I’m talking about paths and markers, so let’s dive in and

explore the potential uses of these two elements in more detail.

�Constructing Paths and Markers
So far, we’ve dealt with relatively simple shapes, which all follow a defined design – we

can clearly recognize a circle as such, or a single line connecting two points! (Yes, it

might sound like I’m really stating the obvious again, but yes, there is a point – stay with

me on this…)

Table 2-3.  Attributes for Lines, Polylines, and Polygons

Attribute Purpose

x1, y1 The x and y positions of point 1 (our starting point).

x2, y2 The x and y positions of point 2 (our finishing point).

points A list of points, each separated by a comma, space, EOL, or line feed character. Each

must contain an x and y coordinate – the drawing automatically closes the path, so a

final line will be drawn from the last set of points to the starting set.

Note: this applies to lines and polygons only; to see how it works for polylines, add a

fill color to the shape.

Chapter 2 Adding SVG Content to a Page

33

All of those shapes have one thing in common – they are made up of lines that

connect two points; multiple lines together will create a shape. However, what if we

wanted to create an abstract shape, which is not a recognizable design, such as a square?

Enter the world of SVG paths – we can provide a series of coordinates that when

joined, form our final design. The beauty though is that we can apply all manner of

different styles to it, just as we would do for a standard circle or square. We can really go

to town on our design – to get a taster, try opening the gradients.html file that is in the

gradients folder within the code download that accompanies this book….

I’ll bet good money that your initial response will be something along the lines of

Yikes! What the…? Does this sound about right? Don’t worry – this wasn’t meant to shock

you, but to give you a flavor of what is possible when we work with SVG paths. Let’s take

it back a few notches and check out a simple example of what we can achieve, as shown

in Figure 2-4.

This curve example was taken from a useful Codepen of examples (available at

https://codepen.io/chriscoyier/pen/NRwANp), created by the CSS expert Chris Coyier

of CSS-Tricks.com fame; below is the code extract used to create our example:

 <svg viewBox="0 0 10 10" class="svg-4">

 <path d="M2,5 C2,8 8,8 8,5"/>

 </svg>

Clearly something a little easier to understand! The question is, what does it all

mean? This is a really useful concept to learn when working with SVGs, so let’s break it

down into its constituent parts.

Figure 2-4.  A simple example of an SVG path

Chapter 2 Adding SVG Content to a Page

https://codepen.io/chriscoyier/pen/NRwANp
http://css-tricks.com

34

�Understanding Our Code in Detail

The first line of code is the standard opening tag for any SVG shape or design; we’ve met

this already in previous exercises, so should be a little more familiar by now. The real

magic happens in line 2 – we have the (aptly named!) <path> tag, inside which we assign

a series of numbers and or letters to create our design.

There is, however, method in the apparent madness of that string of characters – they

are a series of commands to define how our shape should appear. To make sense of it,

there is one important concept we should be aware of: the difference between absolute

and relative commands.

What do I mean by this? Well – let’s take the first command: M2,5. Put very simply,

it means “move to the exact location 2, 5”. The next command, C2,8 8,8 8,5, is a little

more complex: we use this to create a Bezier curve. The starting point for it was defined

with the initial command; the next three coordinates define the degree of curve and

end point of our Bezier curve. Keeping this in mind, let’s assign those coordinates to an

edited version of the previous screenshot (Figure 2-5).

Note that in the above screenshot, I’ve only included the coordinates of the C
command, to show how it matches with our original command.

We’ve touched on the need to understand the difference between absolute and

relative commands – the key to making paths work is this: most commands come in

pairs – either as uppercase characters, or as lowercase equivalents. The uppercase

characters represent absolute commands, whereas the lower case ones are relative.

Figure 2-5.  An edited version of our Bezier curve SVG

Chapter 2 Adding SVG Content to a Page

35

To put this into context, our example directed the starting point to be at the absolute

location of 2,5. If we had made it relative (i.e., used a lowercase m instead), then it would

read as “move 2 to the right, and 5 down,” from our current location instead.

Working with paths can open a real minefield of possibilities – the d attribute we met

at the beginning of this section has a mini-syntax in its own right! It’s absolutely worth

exploring what is possible; some people may say it’s simpler just working with paths (as

you can do just about everything we’ve already covered), but the key to remember is

that using predefined shapes will make it easier to read the code in your final solution.

For a good in-depth tutorial, check out Chris Coyier’s guide on using paths, which is
available at https://css-tricks.com/svg-path-syntax-illustrated-
guide/. This contains a list of the different commands we can use to create
individual paths, in addition to a good explanation of how paths operate.

Let’s move on – we can do a huge amount with the powerful path element, but to

really take things up a level, how about adding markers to our design? Mark…huh? I hear

you ask – what would that give us…?

�Adding Markers to SVG Paths

Aha – let me explain: who hasn’t used Google Maps in some form or other? You enter the

zip code or name of a location, and up pops a little pointer to indicate the location, right?

That’s a marker – trust me, it’s nothing more complicated than simply identifying a point

on our design! We use the same principle when working with SVG designs. There’s a variety

of different uses for markers – we could use them as indicators on maps, or for a wiring

schematic we might create, where clarity is paramount, irrespective of the size of the design.

Let’s put this to the test, and construct a simple SVG of a line that has a marker

element at one end – this will be the subject of our next exercise.

DRAWING PATHS AND MARKERS

We’re going to break with tradition, and create this as a Codepen (for variety), so go ahead and

browse to https://codepen.io, then follow these steps:

	1.	 We’ll start by adding this block of code into the HTML section of our pen – this

creates our basic line and marker:

Chapter 2 Adding SVG Content to a Page

https://css-tricks.com/svg-path-syntax-illustrated-guide/
https://css-tricks.com/svg-path-syntax-illustrated-guide/
https://codepen.io

36

<h2>Beginning SVG: Drawing Paths and Markers</h2>

<svg>

 <defs>

 <marker id="circle1" markerWidth="8" markerHeight="8"

 refX="5" refY="5" orient="auto">

 <circle cx="5" cy="5" r="3" fill="black"/>

 <circle cx="5" cy="5" r="2" fill="lightgray"/>

 <path d="M 4,3.5 L 6.5,5 L 4,6.5 Z" fill="slategray"/>

 </marker>

 </defs>

 <�line x1="50" y1="120" x2="250" y2="50" stroke="black" stroke-

width="5" marker-end="url(#circle1)" />

</svg>

	2.	I n the CSS section, drop in these styles – they are not obligatory but will add a

little variety to the title styling. You can leave these styles out if you prefer – the

demo will work just fine without them:

@import url('https://fonts.googleapis.com/css?family=PT+Sans');

body {

 font-family: 'PT Sans', sans-serif;

 padding: 2rem;

}

	3.	 Go ahead and save the pen by clicking on the Save button – if all is well, we

should see something akin to the screenshot shown in Figure 2-6.

Figure 2-6.  Drawing paths and markers

Chapter 2 Adding SVG Content to a Page

37

You can see a working version in a Codepen at https://codepen.io/
alexlibby/pen/goXbRJ, or peruse a version available within the code download
that accompanies this book (look for the paths.html file).

Our design is deliberately meant to look simple, but if you take a look at the code in

more detail, you can see a few keywords we’ve not touched on to date. Let’s dive in and

take a look at them in more detail.

�Understanding How Our Code Works

If we concentrate on the core part of our code, we can see this block – it kicks off with a

<defs> element, which allows us to create an element for later reuse:

<defs>

 <marker id="circle1" markerWidth="8" markerHeight="8"

 refX="5" refY="5" orient="auto">

 <circle cx="5" cy="5" r="3" fill="black"/>

 <circle cx="5" cy="5" r="2" fill="lightgray"/>

 <path d="M 4,3.5 L 6.5,5 L 4,6.5 Z" fill="slategray"/>

 </marker>

</defs>

The <defs> element is not rendered immediately, but instead defines an object for

later reuse – it’s best to think of any object stored within a <defs> block as a template or

macro created for future use.

Within our <defs> element, we create a <marker> tag, to which we apply an

ID of circle1; the viewport size of our marker is defined by the markerWidth and

markerHeight values, and will be attached using the refX and refY coordinates.

Inside our marker element, we define two circles – one is filled in with the color

black, with the second placed inside it and colored light gray. (The final design looks like

one circle with a thick border, but it is two circles that overlay each other). We then add

a slate gray-colored arrowhead, which is applied using the path command; this is then

completed with the closing </marker> and </defs> tags. Our marker is then applied to

Chapter 2 Adding SVG Content to a Page

https://codepen.io/alexlibby/pen/goXbRJ
https://codepen.io/alexlibby/pen/goXbRJ

38

the line element we’ve drawn – we attach the marker at the end point of our line, using

the marker-end attribute, as indicated in this code extract:

<line x1="50" y1="120" x2="250" y2="50" stroke="black" stroke-width="5"

marker-end="url(#circle1)" />

The value passed via marker-end references the object we created in our
<defs> block, which we discussed earlier in this section.

We could have used marker-start to attach our marker at the start point of our line,

but I don’t think the final result would look quite as good! We’ve touched on some of the

attributes that can be used – Mozilla has a useful article outlining each option in more

detail, which is available at https://developer.mozilla.org/en-US/docs/Web/SVG/

Element/marker.

Let’s change tack and focus on something a little more complex – we’ve touched on

using paths as a way of creating more abstract shapes, but there will be occasions where

we need something a little more…practical! Thankfully we can use paths to achieve this;

let’s work on a more practical example of using this element in more detail.

�Creating More Advanced Shapes
Up to this point, our examples have been relatively straightforward – it’s time we took

things up a level again and produced something a little more complex, to show what can

be achieved with SVG.

A good example is the classic gauge – we can use this to measure and / or change any

setting, such as opacity or measure broadband speed. Okay, perhaps a little contrived,

yes, but the point being that if we need to measure a range of values, or quickly change

them, then a gauge might be a useful tool to use.

The great thing about SVG is that we can easily create a basic gauge – it will

automatically resize, without loss of function, and can later be animated if desired. Over

the course of the next exercise, we’re going to explore how to create such a gauge, using

an example adapted from a Codepen created by Adao Junior.

Chapter 2 Adding SVG Content to a Page

https://developer.mozilla.org/en-US/docs/Web/SVG/Element/marker
https://developer.mozilla.org/en-US/docs/Web/SVG/Element/marker

39

CONSTRUCTING A CIRCULAR GAUGE

Let’s make a start:

	1.	I n a new file, go ahead and add the following code, saving it as advanced.

html in our project area:

<!DOCTYPE html>

<html>

<head>

 <meta charset="utf-8">

 <title>Beginning SVG: Creating a more advanced example</title>

 <link rel="stylesheet" href="css/advanced.css">

</head>

<body>

 <h2>Beginning SVG: Creating a Circular Gauge</h2>

</body>

</html>

	2.	 Go ahead and add the following code in between the <body> tags – this

creates the gauge and accompanying text:

<�svg id="gauge" x="0px" y="0px" width="176px" height="168px"

viewBox="0 0 76 68">

<g>

 <�text transform="matrix(1 0 0 1 22.9209 43.4141)"

fill="#708090">45%</text>

</g>

<�path fill="none" stroke="#222729" stroke-width="2" stroke-

miterlimit="10" d="M16.652,65.29

 �C8.984,58.838,4.112,49.171,4.112,38.366c0-19.424,15.746-

35.171,35.17-35.171c19.424,0,35.17,15.747,35.17,35.17

1c0,10.805-4.872,20.473-12.54,26.924"/>

<�path class="completion" fill="none" stroke="#708090" stroke-width="5"

stroke-miterlimit="10" d="M17.107,65.29

 �C9.44,58.838,4.567,49.171,4.567,38.36

6C4.567,20.6,17.74,5.911,34.852,3.532"/>

Chapter 2 Adding SVG Content to a Page

40

<�text id="complete" transform="matrix(1 0 0 1 21.3916 51.7891)"

fill="#000000">completion</text>

</svg>

	3.	 We need to add a little styling to finish off the effect – go ahead and add the

following to a new file, saving it as advanced.css within the css subfolder

that is in our project area:

@font-face { font-family: 'pt_sansregular'; src: url('../font/pt_

sansregular.woff') format('woff'); font-weight: normal; font-style:

normal; }

body { font-family: 'pt_sansregular', sans-serif; padding: 2rem;

 font-size: 18px; }

#complete { font-size: 8px; }

	4.	 Save both files – if we preview the results in a browser, we should see

something akin to the screenshot shown in Figure 2-7.

You can see the original version of this demo in a Codepen at https://codepen.io/
junior/pen/RWQver.

Although the code looks complex, we’ve touched on most of the key terms used

within – in fact, the only terms we’ve yet to meet are <text> and <transform>! There

are some useful concepts within this code we should be aware of, so let’s pause for a

moment to explore how the gauge was created in more detail.

Figure 2-7.  Creating a circular gauge

Chapter 2 Adding SVG Content to a Page

https://codepen.io/junior/pen/RWQver
https://codepen.io/junior/pen/RWQver

41

�Dissecting Our Gauge Code
For this demo, you might well be forgiven if an initial look at this code prompts a…shall

we say…colorful response! It looks scary, but in reality it is easier to understand than it

might first appear:

We begin with defining our SVG viewport, and set a viewport of around 50% its size –

this will have the effect of zooming in the image when displayed. Inside our SVG, the first

element we create is a <text> element, which displays the percentage completed in the

gauge (in this case 45%).

The first of the two <path> elements creates the dark-colored back line, over which

we show the 45% completed <path>, which is styled using a slate gray color. In both

cases, we’re setting stroke widths, which define the thickness of each <path> element,

and which is drawn centered on the path. We then close out the SVG with a second

<text> element, which contains the word complete, and uses a transform attribute to

help center it in both the SVG and against the percentage value.

Note T o really understand the detail of how each path works, try breaking
the d= attribute into separate lines, where you see an uppercase or lowercase
letter. I would recommend taking a look at the excellent article by Chris Coyier at
https://css-tricks.com/svg-path-syntax-illustrated-guide/; this
shows you how to translate these letters (from any SVG), into something you can
recognize as an action, such as M to move to an absolute point.

Let’s move on – it’s time to spice things up a little and go really abstract! Over the

course of the next chapter, we will dive into how we can manipulate images and text

when working with SVG. However, we can equally use them as a basis for creating

abstract shapes using clip-paths; this tool is something of a special case, as it can be used

both in a standard and SVG capacity. To see what we mean, let’s dive in and see how

crazy things might get…

�Creating Unusual Shapes with Clip-Paths
Clip-paths – this is where we can really have some fun! This feature originated as part of

the initial SVG spec from 2000, but has since been moved into the CSS Masking module,

so it can be used in either a SVG or CSS capacity.

Chapter 2 Adding SVG Content to a Page

https://css-tricks.com/svg-path-syntax-illustrated-guide/

42

Put simply, we use clip-paths to specify a clipping path that can be applied to any

element – this includes both text and images. This clip-path can take any shape we desire

and can be created using the shape functions we’ve covered thus far in this chapter.

Anything outside of the clip-path won’t be displayed – in effect, a clip-path is a form of

mask, which we can use to block out undesired content, without physically removing it

from the original image.

The best way to understand how this work is to see it in action, so without further

ado, let’s put together a simple demo to show off the effects of applying a clip-path to an

image. Our demo will use an image of houses in a sunset – you can see the original image

on the publicdomainvectors.org site at https://publicdomainvectors.org/en/free-

clipart/Houses-on-the-horizon-vector/1525.html.

CREATING AN UNUSUAL SHAPE

Let’s make a start:

	1.	 We’ll start with add the following code to a new file, saving it as clippath.

html in our project area:

<!DOCTYPE html>

<html>

<head>

 <meta charset="utf-8">

 <title>Beginning SVG: Creating a simple example</title>

 <link rel="stylesheet" href="css/clippath.css">

</head>

<body>

 <h2>Beginning SVG: Drawing unusual shapes with clip-path</h2>

 <svg height="0" width="0">

 <defs>

 <clipPath id="svgPath">

 <�path fill="#FFFFFF" stroke="#000000" stroke-width="1.5794"

stroke-miterlimit="10" d="M215,100.3c97.8-32.6,90.5-71.9,336-77.6

 �c92.4-2.1,98.1,81.6,121.8,116.4c101.7,149.9,53.5,155.9,14.7,17

8c-96.4,54.9,5.4,269-257,115.1c-57-33.5-203,46.3-263.7,20.1

 c-33.5-14.5-132.5-45.5-95-111.1C125.9,246.6,98.6,139.1,215,100.3z"/>

 </clipPath>

Chapter 2 Adding SVG Content to a Page

http://publicdomainvectors.org
https://publicdomainvectors.org/en/free-clipart/Houses-on-the-horizon-vector/1525.html
https://publicdomainvectors.org/en/free-clipart/Houses-on-the-horizon-vector/1525.html

43

 </defs>

 </svg>

</body>

</html>

	2.	N ext, go ahead and take copies of the css and img folders from clippath

folder within the code download that accompanies this book. Store these in the

project area – they contain some simple styling required for the demo, along

with our source SVG file.

	3.	 We’re almost there – save the file, then go ahead and preview the results in a

browser; if all is well we should see the weird image shown in Figure 2-8.

Okay – yes, perhaps describing this image as weird is a little over the top! However

it does show that we can create some odd-shaped images using the clip-path property

within SVG. The great thing about it is that we’re simply using path values in a similar

Figure 2-8.  Our crazy clip-path image...

Chapter 2 Adding SVG Content to a Page

44

manner to that in the previous exercise – each is a set of commands that, when executed,

draws our random shape as a series of connected points.

We open with our now familiar opening <svg> tags, inside which we’ve set up a

<defs> element – this is to define our clip-path as a shape that can be reused. The shape

itself starts at the absolute point of 215,100 and then simply moves around in a series of

relative moves to various points in our viewport. The clip-path is then completed with

the closing tags, ready for use in our page.

At the bottom of our HTML code, we’ve put a simple link into a SVG image – we tie

this all together with the img { clip-path: url(#svgPath); } statement in our CSS

file, which applies our SVG clip-path to our image.

We’ll revisit working with images and SVG in the next chapter, “Working with
Images and Text.” To understand more of what is possible, please refer to the
great article by Sarah Soueidan, available at http://www.sarasoueidan.com/
blog/css-svg-clipping/.

Phew – we’ve come to the end of our journey through each of the different types of

shapes available when working with the SVG format; it’s up to us to choose the right

ones to create our next killer design. A part of this though is adding color – we’ve touched

on this at various points with attributes such as fill or fill-opacity in previous exercises, so

let’s take a moment to review this in a little more detail.

�Painting Elements
Any SVG we create will look very dull if we simply created a line drawing – sometimes

this may be necessary (in the case of an electronics schematic), but more often than not,

we will need to add color. Question is – how?

Well, we’ve already done so in the examples we’ve created so far, but without

realizing it! If you take a look at the examples we’ve worked through to date, you can’t

help but see code such as this example:

<path fill="#FFFFFF" stroke="#000000" stroke-width="1.5794" stroke-

miterlimit="10"...

Chapter 2 Adding SVG Content to a Page

http://www.sarasoueidan.com/blog/css-svg-clipping/
http://www.sarasoueidan.com/blog/css-svg-clipping/

45

These terms are just four of the options available for providing color – we start with

the basics such as fill for painting shapes, through to stroke for defining the outline

color of that shape, or stroke-linecap for determining how the ends of our segment

lines will appear. There is a host of options we can use, so to bring all of the possibilities

together from the various demos thus far, I’ve summarized the details in Table 2-4.

Some settings can be set using plain CSS, and not SVG-specific commands – it’s
best to test each in turn to find out what you can use.

Table 2-4.  A summary of Painting Options for SVGs

Attribute Purpose

fill Fills in the color of any SVG shape – can take any CSS color value, such

as HEX, named colors, or RGB/a values.

fill-opacity Used to set the opacity of the color specified in fill.

fill-rule Determines how which side of a path is in a shape, and how the fill

property paints that shape.

stroke Defines the outline color of an element – accepted values can be none

(default), or <paint>, context-fill, or context-stroke.

stroke-width Controls the width of a border on SVG shapes.

stroke-linecap Sets the starting and ending points of a border on SVG shapes – can

take butt, square, or round as values.

stroke-linejoin Controls how the joint between two segments is drawn – can accept the

values miter, round, or bevel.

stroke-miterlimit If two segments with miter joints meet at a sharp angle, this setting

imposes a ratio of the miter length to the stroke-width. Exceeding this

limit will change a miter joint to a bevel.

stroke-dasharray +

stroke-dashoffset

Determines when and where to draw a dash array (a series of dashes

instead of a continuous line).

stroke-opacity Determines the opacity level of the outside border.

Chapter 2 Adding SVG Content to a Page

46

These are just some of the options open to us when painting SVG elements – there

is no secret recipe to creating a really stunning piece; that old adage of “practice makes

perfect” comes into its own in this respect. The best way to learn is to choose an SVG and

then open it up in a text editor and just change the values.

Granted we can learn what each does, but sometimes there really is no better way

than to just go for it! And that just happens to be a perfect lead-in for our next exercise –

let’s put this into practice by adjusting colors in both radial and linear patterns.

�Creating Gradients and Patterns
Up until this point, we’ve talked about painting (or filling) SVG elements with a chosen

shade of color – there is one thing though: it doesn’t matter what color we choose, it will

always be just one color for that part of our design.

After a while this is likely to become a little dull – it might work if most of your

projects focused solely on using single, bold colors, but this clearly won’t suit everyone!

What if we could include a graduated color into our designs though…?

Well, we can – in the same way as we might using standard CSS, we can apply

gradient effects to SVG elements. Gradient effects come in two different types – linear

(centered along one line), or radial (radiates out from a central point). A gradient is best

explained with an example, so without further ado, let’s crack on with our next exercise.

�Constructing Gradients
When creating gradients, we can really have some fun and apply all manner of different

effects – sometimes though just keeping it to a select few can create more of an impact!

However many colors we decide to use, the fun is in trying out different combinations,

and that taking a work-in-progress approach to this may pay dividends in the longer

term (what you find now may be more useful later, and so on…).

For our next exercise, we’re going to run with this work-in-progress approach

and use it as a basis for starting to add gradients to an SVG image. I would absolutely

encourage you to try different colors when creating gradients – the next exercise is all

about illustrating the process of adding color gradients, rather than the final selected

colors! We’ll make use of an SVG image from the freesvgimages.com website; this is a

good site to bookmark as a useful source of images for your projects.

Chapter 2 Adding SVG Content to a Page

http://freesvgimages.com

47

CREATING A GRADIENT

Let’s make a start:

	1.	 We’ll begin as always with a new document – go ahead and add the following

code, saving it as gradients.html in our project area:

<!DOCTYPE html>

<html>

<head>

 <meta charset="utf-8">

 <title>Beginning SVG: Creating a simple example</title>

 <link rel="stylesheet" href="css/gradients.css">

</head>

<body>

 <h2>Beginning SVG: Adding linear gradients to SVG images</h2>

</body>

</html>

	2.	 We are going to add a little extra styling for the title on our page – for this,

extract a copy of gradients.css and drop it into the css subfolder of

our project area. It will make use of the fonts folder we already have from

previous exercises, and which should already be in this folder.

	3.	N ext, go ahead and open up a copy of the wip.svg file from the code

download that accompanies this book – copy the entire contents (yes, all 248

lines of it) and paste immediately before the closing </body> tag in our code.

	4.	 We are now at the point where we need to add our gradient effect – for this, go

ahead and insert a couple of blank lines after the opening <svg> tag, then

add the following code as highlighted:

�<svg id="message" x="0px" y="0px" width="612px" height="792px"

viewBox="100 150 612 792" enable-background="new 0 0 1212 1392">

 <defs>

 <linearGradient id="wip-gradient" x1="0%" y1="0%" x2="100%" y2="0%">

 <stop offset="0%" style="stop-color:#FF9133;" />

 <stop offset="100%" style="stop-color:#FF0015;" />

 </linearGradient>

 </defs>

Chapter 2 Adding SVG Content to a Page

48

	5.	 We have our gradient definition now in place, but for it to be applied, we need

to make one final change to our SVG element. For this, look for this code, on or

around line 19:

<path fill-rule="evenodd"...

Go ahead and insert this attribute after the opening <path element, as

highlighted:

<path fill="url(#wip-gradient)" fill-rule="evenodd"...

	6.	 Save the file, then preview the results in a browser – if all is well, we should

see something akin to the screenshot shown in Figure 2-9, which I hope might

make you smile at the irony of it:

Figure 2-9.  A radial gradient applied to our SVG

Chapter 2 Adding SVG Content to a Page

49

Hopefully you had a little chuckle at the irony of the image – you can see the original

on the freesvgimages.com site at https://www.freesvgimages.com/im-a-work-in-

progress/. Ultimately though the point being that as in life, nothing is ever finished; we

should always consider things as merely evolving, so that we can strive to improve both

ourselves and the projects we work on.

�Using Radial Gradients
Our demo applied a linear gradient to the SVG image – it’s a perfectly valid option

and works just as well. Trouble is, there may be occasions where this might not work

so well; the base image may suit a gradient that radiates from a central point in the

artwork.

To understand what we mean by this, take a look at the source image used earlier in

“Creating Unusual Shapes with Clip-Paths” – in a sense, I think the design would work

better with a radial gradient than a linear one. In contrast, the image used in the previous

demo has text that runs from left to right, so I suspect a radial one wouldn’t work so well

(Figure 2-10), and that a linear one would be more suitable:

Ultimately it is up to us to decide which fits our needs best – there is no hard-and-fast

rule that determines which gradient should be used and when, so with that in mind, let’s

test that assumption:

Figure 2-10.  Using a radial gradient instead...

Chapter 2 Adding SVG Content to a Page

http://freesvgimages.com
https://www.freesvgimages.com/im-a-work-in-progress/
https://www.freesvgimages.com/im-a-work-in-progress/

50

Change the <linearGradient tag to <radialGradient and save the change – the

code should look like this:

<defs>

 <radialGradient id="wip-gradient" x1="0%" y1="0%" x2="100%" y2="0%">

 <stop offset="0%" style="stop-color:#FF9133;" />

 <stop offset="100%" style="stop-color:#FF0015;" />

 </radialGradient>

</defs>

Save the change – if we refresh the demo, it shows a change, as indicated in Figure 2-10

on the previous page. Something in me says this doesn’t look so good – it works, but

the impact just isn’t quite there! Leaving this aside, our code uses a number of new

keywords, so let’s take a moment to explore these in more detail.

�Exploring How Our Code Works

Let’s revisit the core part of our code, from the first part of the gradient demo:

<defs>

 <linearGradient id="wip-gradient" x1="0%" y1="0%" x2="100%" y2="0%">

 <stop offset="0%" style="stop-color:#FF9133;" />

 <stop offset="100%" style="stop-color:#FF0015;" />

 </linearGradient>

</defs>

Our code was set up in a <defs> block – this allows it to be reusable throughout the

SVG image. A closer look at the content of the code for the image shows multiple paths in

use – we’ve already applied our gradient(s) to one of them, so they can be applied to the

remaining paths in the same manner.

Within our definition, we have our <linearGradient> tags – alongside the standard ID,

we have our coordinates (x1, y1 and x2, y2) and the <stop> attributes. The latter control

the ramp of colors to use over the shape – in our case, we’ve specified 0% and 100%, so the

gradient will run over the entire shape. If we had set something akin to 10% and 50% (for

example), then the gradient will start from 10% in, and finish at 50% of the range.

I’d recommend changing the values as a test – this is the best way to experience
the impact of changing the stop values on our design.

Chapter 2 Adding SVG Content to a Page

51

�Taking It Further
It’s at this point I would normally suggest taking things up a notch, and taking a look at

more advanced examples, such as that of the flame animation created by Sarah Drasner,

at https://codepen.io/sdras/pen/gaxGBB.

However, I have a confession to make – and with good reason: Remember how I

suggested trying to change the <linearGradient> tag to <radialGradient>, but not

change any other value? Well, this has worked, but I’m not convinced it’s produced the

best design – and not just because of the choice of colors!

The real reason is because of the coordinates we’ve specified in our shape – these

are intended to be for linear gradients, whereas we should really be using cx, cy, and

r to define the center and radius of the element. We should then use fx and fy values

to define the focal point of our gradient – a mix of these values will very likely produce a

gradient that has more impact than by simply replacing the tags as originally suggested

at the end of the previous exercise.

To help gauge the impact of tweaking settings until you are more familiar with how
they work, you may like to use an online gradient generator to help – there are
several available online, such as the one available at the AngryTools.com website:
http://angrytools.com/gradient/.

Enough of the confession – let’s move on! We’re not limited to simply creating SVG

shapes to sit on a page; we can insert these into our page background as well. A good use

case for this would be to create a company logo as an SVG image, then set the opacity to

around 50%, and apply this as a fixed background image on our page. This is a really easy

technique to get our heads around, so let’s dive in and explore this in more detail.

�Applying Pattern Effects to CSS Backgrounds
Throughout the course of this chapter we’ve created a variety of shapes which can easily

be added as images to a page – this works very well, but what if we needed to create a

background effect? Is this possible with SVG, you might ask….

Thankfully it is – Figure 2-11 shows that support for this feature in recent desktop

browsers (last couple of years) is currently excellent:

Chapter 2 Adding SVG Content to a Page

https://codepen.io/sdras/pen/gaxGBB
http://angrytools.com
http://angrytools.com/gradient/

52

If we were to check the CanIUse.com site, we will find that support among mobile

devices is equally good, with only Opera Mini showing partial support in recent browsers.

There is one question I do hear you ask though – why would we use a data-uri value to

display our SVGs? There are several benefits for using data-uris, when working with SVGs:

•	 Data-uris can be stored within CSS files; this helps to reduce the

number of calls to external resources, although this must be balanced

against the size of our style sheet!

•	 We can perform micro-optimization on data-uris, to a greater degree

than we might on a standard SVG; this is a more advanced topic that

we will cover in Chapter 7, “Optimizing SVGs”;

•	 SVGs stored as data-uris can be manipulated internally, unlike

external images (more anon).

Leaving aside the reasons for using data-uris for the moment, how does the process

work? We can implement an SVG as a background image directly, but it makes it

harder to change the fill color easily. In many cases, this won’t be an issue (or at least

something we can live with), but there may be instances where we need to edit the color.

Fortunately, there are several ways to get around this: one such method is to use

data-uris. Put simply, we convert our SVG image into a base-64 encoded string of

characters, before adding it as a link within our style sheet.

Thankfully we don’t have to manually convert our image – after all, the conversions

involved would be horrendous! We can instead make use of a convertor such as the

Figure 2-11.  Support for SVGs in CSS backgrounds – Source: caniuse.com

Chapter 2 Adding SVG Content to a Page

http://caniuse.com
http://caniuse.com

53

example at https://codepen.io/elliz/pen/ygvgay, to facilitate this process for us.

We’ll put this process to the test as part of our next exercise – this will make use of a pre-

built SVG pattern, available from the Hero Patterns site, at http://www.heropatterns.

com. Let’s dive in to see what is required in action.

ADDING A PATTERN

	1.	 We’ll start by taking a copy of the gradients.html file from the previous

exercise, then removing all of the code between the <body> tags – save this in

our project folder as background.html.

	2.	 Go ahead and add the following code in between the <body> tags of the file

we’ve just created – don’t forget to save it:

<div id="content">

 <h2>Beginning SVG: Applying SVGs to CSS Backgrounds</h2>

 �<p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vivamus

consequat mattis risus. Ut magna quam, consectetur a consectetur in,

rhoncus ut diam. Curabitur mauris lectus, malesuada quis viverra in,

tristique at est.</p>

 �<p>Vestibulum in felis vitae eros aliquam ornare. Nunc elementum

risus non neque rhoncus malesuada. Curabitur ultricies tellus eu sem

sollicitudin, vel bibendum sapien sagittis. Duis scelerisque urna

nulla, vel accumsan massa gravida commodo.</p>

</div>

	3.	I n a new file, add the following style code – this will format the text onscreen

and provide a little styling for the panel containing the text. Save it as

background.css, within the css subfolder of our project area:

@font-face { font-family: 'pt_sansregular'; src: url('../font/pt_

sansregular.woff') format('woff'); font-weight: normal; font-style:

normal; }

body { font-family: 'pt_sansregular', sans-serif; }

#content { border: 0.0625rem solid #000; border-radius: 0.3125rem;

width: 21.875rem; margin-left: auto; margin-right: auto; padding:

0.9375rem; background-color: rgba(255, 255, 255, .7); padding: 2rem; }

Don’t forget to update the link to the CSS file in background.html!

Chapter 2 Adding SVG Content to a Page

https://codepen.io/elliz/pen/ygvgay
http://www.heropatterns.com
http://www.heropatterns.com

54

Note the fonts folder should already be present in our project area from previous
exercises.

	4.	 Up next comes the real magic – we’re going to incorporate an SVG image into

our background. For this, browse to http://www.heropatterns.com , then

click on the Jupiter pattern.

	5.	 Copy the contents of the Generated CSS Code box, then paste it immediately

after the font-family:... line within the body style rule in our demo

style sheet.

	6.	 Save the style sheet – we can now preview the results! If all is well, we should

see something akin to the screenshot shown in Figure 2-12.

This little demo is meant to be very simple, but its simplicity belies the power of what

we can achieve – the key lies in how we use a data-uri to display the image. Let’s take a

moment to explore how our demo works in more detail, and see how we can adapt it for

our own use.

Figure 2-12.  Applying SVG effects to CSS backgrounds

Chapter 2 Adding SVG Content to a Page

http://www.heropatterns.com

55

�Exploring the Code in Detail

Remember how we talked about the different ways of implementing SVG images, back in

Chapter 1? Well, for many occasions, we would simply use tags, treating our SVG

image as if were a standard PNG or JPEG image, for example. However, we can also use

background images, although the trade-off is that we lose the ability to style individual

elements with the SVG image.

Our code doesn’t contain anything out of the ordinary, save for just one line – line 11.

This is a call to background image: we treat our target image as if we are referencing one

on available at a URL. However, instead of a URL, we have the code of our SVG as a string

of characters; the code for this was provided by the Hero Patterns website, but it could

equally have come from a convertor, such as the one available at https://codepen.io/

elliz/pen/ygvgay. Once the code has been added to our style sheet, the results will be

displayed when previewed within our browser.

�Creating an Alternative Pattern

At this point, we’ve completed our demo – it looks great (at least for what it is) and works

very well. This however is only part of the story: What about using some of the shapes we

created right back at the start of this chapter?

Absolutely we can – the beauty of this is that we’ve already covered most of what we

need to use to create it, save for one tag, the <pattern> tag:

 <svg width=125 height=120>

 <defs>

 <�pattern id="illustration" x="10" y="10" width="20" height="20"

patternUnits="userSpaceOnUse" >

 <circle cx="15" cy="15" r="15" style="stroke: none; fill: dimgray" />

 </pattern>

 </defs>

 <�rect x="10" y="10" width="100" height="100" style="stroke: #000000;

fill: url(#illustration);" />

 </svg>

To see how this works, go ahead and add this code to the background demo we’ve

just created – it needs to go in immediately after the <h2>, on or around what will be

line 12. We will also need to add in an svg { float: left; } to our style sheet, to allow

text to flow around the SVG.

Chapter 2 Adding SVG Content to a Page

https://codepen.io/elliz/pen/ygvgay
https://codepen.io/elliz/pen/ygvgay

56

If we refresh the browser, we should see the updated version, as shown in Figure 2-13.

Notice the difference – this gives us the ability to add in SVGs as patterns to a page;

if we wanted to, we can simply extract the contents of the SVG into a string and replace

the existing background URL with this new code. Suffice to say that this gives us plenty of

options when creating our projects!

It’s time to change tack – we’ve almost come to the end of this chapter, but before we

move onto exploring images and text, there is one more topic we need to cover. We’ve

touched on a variety of different techniques for creating shapes; unfortunately, there is

not enough space in this book to print all of the available configuration options we can

use to manipulate these shapes. There are, however, plenty of good resources available,

so let’s take a moment to cover off some of the more useful ones as a starting point for

developing your skills with SVG.

Figure 2-13.  Our updated SVG as a background image

Chapter 2 Adding SVG Content to a Page

57

�Setting Advanced Configuration Options
Over the course of this chapter, we’ve encountered a host of different attributes for

manipulating different elements – such as the x1,y1 coordinates, or stroke-width for

setting the width of the border on an SVG. Trouble is, we’ve only scratched the surface:

detailing all of the possible options would easily fill a book by itself!

With this in mind, I would definitely encourage you to make use of available online

resources that detail these and more advanced configuration options; some of them are

listed below, to help get you started:

•	 https://developer.mozilla.org/en-US/docs/Web/SVG/Attribute

•	 https://developer.mozilla.org/en-US/docs/Web/API/Document_

Object_Model#SVG_interfaces

•	 http://devdocs.io/svg/attribute

•	 https://www.w3.org/TR/SVG11/

•	 The SVG color chart hosted at http://www.december.com/html/

spec/colorsvg.html – I’ve created a version of this chart as a

PDF – you can view this from the code download that accompanies

this book.

There are plenty more articles available online – note though that some are a few

years old, so if in doubt, I would recommend checking the commands used against the

MDN articles listed above, which are regularly updated and present a useful source of

the attributes available when working with SVG elements.

�Summary
Creating an SVG design consists of using a mix of different shapes – this might range

from the humble square through to something that can perhaps only be described as

being abstract. Clearly choosing the right mix of shapes to use will determine how easy

or complex our final design is to create – we’ve covered a number of options throughout

the course of this chapter, so let’s take a moment to review what we’ve learned.

We kicked off this chapter with a review of the different types of shapes available,

which included squares, circles, and lines; in each instance we created a simple

example, before working through the different attributes that made up the code.

Chapter 2 Adding SVG Content to a Page

https://developer.mozilla.org/en-US/docs/Web/SVG/Attribute
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model#SVG_interfaces
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model#SVG_interfaces
http://devdocs.io/svg/attribute
https://www.w3.org/TR/SVG11/
http://www.december.com/html/spec/colorsvg.html
http://www.december.com/html/spec/colorsvg.html

58

Next up came a look at creating more advanced or unusual shapes – we saw how

paths can play a key part in rendering what is effectively a series of connected points

in our design. We also took a look at how we might paint our designs: we covered how

this has already been done in the examples thus far but also explored some of the other

options available to us.

We then rounded out this chapter with a dive into exploring how SVG can be used

to create patterns and gradients – this might be repeating a simple shape, through to

something more complex such as a linear or radial gradients.

Phew – what a monster chapter! We’re only just getting started though on our

journey through the world of SVG: We’ve created shapes, but what about images and

text? We can create some great effects using SVG in this respect, so stay tuned to see how

in the next chapter…

Chapter 2 Adding SVG Content to a Page

In More Detail

PART II

61
© Alex Libby 2018
A. Libby, Beginning SVG, https://doi.org/10.1007/978-1-4842-3760-1_3

CHAPTER 3

Working with Images
and Text
One of the key benefits of working with SVG is the ability to resize an image with no loss

of quality – to achieve this, we can use any one of several different core shapes (such as

squares or circles), or even go freehand with paths, to create our design.

This is ideal for those instances where we can draw a relatively straightforward

image – what if we needed to work with something more complex? This does not mean

to say that SVG is limited to simple designs at all: other designers have produced some

really complex SVG work, which includes animation, filters, transitions, and the like!

It does raise the question though as to what we can (or should) do if we need to work

with standard images (i.e., not SVG). Can we include them in an SVG…? Would that even

work…? Well, you can – let’s dive in and take a look in more detail, starting with a recap

on inserting images.

�Inserting Images
Images – a vital part of any site; it goes without saying that a website without some form

of visual content will clearly suffer. For example – images of products in an online store:

customers will vote with their feet if they are anything less than perfect!

It goes without saying that we would use tried and tested code such as <img

src="...."> to add the image to a page; if we enter the world of SVG, this opens up

some extra possibilities. Take for example this image of a close-up of one of my favorite

plants, a moth orchid, as shown in Figure 3-1.

62

At first glance, it looks a perfectly ordinary image, right? It’s a great shot of an

orchid, close up; it has a title that’s been added to confirm what type of orchid is in

the image. What if I said this was a screenshot of an SVG element…and not a standard

PNG or JPEG image?

No – I’ve not lost my marbles: Figure 3-1 is indeed an SVG image; to see it in action,

try previewing the embedimage.html file in a browser from the code download that

accompanies this book. How did we achieve this? Let’s take a look at the code:

<svg viewbox="0 0 500 500">

 <rect x="10" y="10" height="500" width="500" style="fill: #000000"/>

 <image x="20" y="20" width="94%" height="94%" href="img/orchid.jpg" />

 <�text x="23" y="75" font-family="Verdana" font-size="35"

stroke="#ffffff" fill="#CC46BF">Phaelenopsis orchid</text>

 <�line x1="20" y1="80" x2="440" y2="80" style="stroke: #ffffff; stroke-

width: 3;"/>

 </svg>

We have a standard SVG element, set with a 500px square viewbox area – inside this

we fill it with a black rectangle. The core of the code lies in the 

</svg>

Chapter 5 Creating Filters

136

	3.	I f we preview the results now, we won’t see any change to the image; to make

this change, we now need to apply our filter – for this, go ahead and insert the

following code after the opening <svg> tag:

<defs>

 <filter id="colorChange">

 �<feColorMatrix type = "matrix" values="0 0 0 0 0 0 0.47 0 0 0 0 0

0.15 0 0 0 0 0 1 0 "/>

 </filter>

</defs>

	4.	 For our filter to work, we need to make one more change – go ahead and

modify the code as indicated:

y="0" filter = "url(#colorChange)"

	5.	S ave the file – if we preview the results in a browser, we’ll see the results

shown in Figure 5-5.

Figure 5-5.  The results of applying a feColorMatrix filter

Chapter 5 Creating Filters

137

Ouch – I know that a landscape picture will have a certain amount of green in it, but

even this image takes it a bit too far! This aside, it illustrates how we can manipulate

colors, without altering the base image. It’s an important technique to master, so let’s

dive in and take a look in more detail.

�Understanding Our Code
A quick look at our image should confirm that we’ve used far too much green – it’s clear

to see that choosing colors must be done with care!

This aside, we’ve used similar principles in this demo, compared to the previous

exercise; we specify our standard <svg> tags, into which we’ve defined our filter. We have

a couple of differences though: the first is the introduction of the <defs> tag – this is to

define a section where we set up properties (in this case, our new filter), ready for use.

The second comes in the form of our primitive – we’ve specified use of a

feColorMatrix primitive, along with a string of numbers that form our color matrix.

For space reasons, it’s displayed as one long string in our code; we could easily display

it as a grid of 4 by 5 (as shown back in Figure 5-4). We then finish it by applying our filter

inline, to the image specified in the 

Chapter 5 Creating Filters

141

	5.	A s a final touch, we should change the title of our image – for this, change the

text between the <h2> tags, as indicated:

<h2>Beginning SVG: Applying Filters à la Instagram</h2>

	6.	S ave the file and preview the results in a browser – if all is well, we should see

the same landscape image from the feColorMatrix exercise, but this time with

added light, as shown in Figure 5-7.

Figure 5-7.  Applying filters à la Instagram

Adding a filter such as Amaro opens up a wealth of opportunities – limited only by

our imagination! If we were to compare the image from Figure 5-7, one might be forgiven

for thinking this shot was taken in the summer, whereas in reality it was taken in early

autumn!

That aside, this demo has illustrated a useful technique we should master when

working with SVG filters – how to apply multiple filters as one filter. There is an

important distinction to make though, which applies to how the filters are applied; to

understand more, let’s take a look at the code in more detail.

Chapter 5 Creating Filters

142

�Understanding How It Works
Anyone who is a fan of using Instagram will be familiar with applying one of the many

filters available within the application.

In reality, these filters are made up of composite elements – in the case of Amaro,

we’re using contrast, brightness, and saturate filters to create our final effect. The first

two use the <feComponentTransfer> filter primitive – this one handles the remapping of

data for each pixel, and is designed for instances where we have to adjust light or contrast

levels. This uses a linear equation to modify the color of each pixel in our image: the rate of

change is controlled by the slope and / or intercept values provided in our code.

In comparison, the saturate filter is applied using the feColorMatrix primitive – this

takes a series of numbers in the form of a color matrix. Our code shows it as a single line of

numbers, but it is better written as a grid of five by four numbers, as we saw back in Figure 5-4.

The key to making this demo work is how these filters are applied – in our example,

the filters are applied sequentially instead of concurrently. In a sense, this means we’re

making three changes to our image, before we see the final result – it works well but isn’t

the most effective means!

To make it more effective, we can apply the filters concurrently – for this, we can

make use of the <feMerge> attribute to store the results of each primitive, before

applying it as one entity to our image. This requires a simple change to our code – let’s

dive in and take a look in more detail.

�Blending and Merging SVG Filters
When creating filters, we can always start with a single primitive – this serves a purpose,

but will soon become somewhat limiting! In the words of that famous Charles Dickens

book, “I want more…”

And more we shall have – to achieve this, we need to venture into the world of

blending and merging filters. This might at first seem complicated, but in reality it isn’t

as difficult as it looks – there are some key principles we should follow:

•	 When defining filters, it is sensible to create a <defs> section at the

start, as a place to store definitions for each filter; this will allow you

to reuse them anywhere in that project.

•	 Always specify a results attribute – this will store the results of

applying the effect to your image or SVG graphic; we make use of this

when merging the filters as the last step in our SVG.

Chapter 5 Creating Filters

143

•	 The last step should always be the <feMerge> block – we use this

to combine the filters into the final solution. The order of each

<feMergeNode> is not critical, but the in reference must tie back to the

result name of defined primitive.

The great thing about merging and blending is that we’ve already covered most of

the principles involved; we create a <defs> area to store our filter primitives, specify one

or more said filter primitives, and tie them together with a <feMerge> block.

�Taking It Further in Watercolors
Our next demo takes creating SVG filters in a different direction – for this, we’re

borrowing one of several effects created by the developer Bennett Feely, namely

Watercolor. You can see the original at http://bennettfeely.com/image-

effects/#watercolor; for our demo, we will translate the existing shortcut values into

SVG filter primitive equivalents. This gives us the perfect base for tweaking the overall

effect at a more granular level.

Bennett’s original filter effect combines three shortcut filters – brightness(1.3),

blur(2px), and contrast(2) – we can use this as a basis, but once the filter is in place,

we can then tweak it to suit our needs.

APPLYING A WATERCOLOR EFFECT

Let’s take a look at what’s involved:

	1.	 We’ll begin by downloading a copy of the watercolor folder from the code

download that accompanies this book – this contains the necessary CSS styles,

image, and font used to style the demo. Store this folder at the root of our project area.

	2.	N ext, go ahead and open watercolor.html – it doesn’t contain a lot, but we

will soon fix this! Start by adding these lines, immediately after the <h2> tags,

to define our SVG element.

<svg width="0" height="0" xmlns="http://www.w3.org/2000/svg">

 <defs>

 <filter id="watercolor" width="200%" height="150%" x="0" y="0">

 </filter>

 </defs>

</svg>

Chapter 5 Creating Filters

http://bennettfeely.com/image-effects/#watercolor
http://bennettfeely.com/image-effects/#watercolor

144

	3.	 Within the <filter> tags, we can now add our primitive declarations – we’ll

begin with the equivalent for brightness(1.3):

 <feComponentTransfer result="bright">

 <feFuncR type="linear" slope="1.3"/>

 <feFuncG type="linear" slope="1.3"/>

 <feFuncB type="linear" slope="1.3"/>

 </feComponentTransfer>

	4.	 We have two more primitive declarations to add – go ahead and leave a blank

line, then add this one in as our replacement for blur(2):

<feGaussianBlur stdDeviation="2" edgeMode="none" result="blur"/>

	5.	T he last one to add in is our replacement for contrast(2); for this

drop in the following code, leaving a blank line after our blur primitive

declaration first:

 <feComponentTransfer result="contrast">

 <feFuncR type="linear" slope="2" intercept="-0.5"/>

 <feFuncG type="linear" slope="2" intercept="-0.5"/>

 <feFuncB type="linear" slope="2" intercept="-0.5"/>

 </feComponentTransfer>

	6.	L ast but by no means least – we need to merge it all together! For this, go

ahead and leave a line, then add in the following <feMerge> block:

 <feMerge>

 <feMergeNode in="bright"/>

 <feMergeNode in="blur" />

 <feMergeNode in="contrast" />

 </feMerge>

	7.	 With our filter declaration in place, we can now add in our image – for this, add

the following code immediately after the closing </svg> tag:

<div class="preview watercolor-effect">

</div>

	8.	S ave the file – if we preview the results, we should see an abstract watercolor

style image of an orchid, as shown in Figure 5-8.

Chapter 5 Creating Filters

145

Figure 5-8.  Our finished watercolor effect

It’s certainly an interesting effect, isn’t it? Although some may say it bears no

resemblance to a true watercolor effect, it doesn’t matter – it’s a perfect example of

what we can achieve with relatively little difficulty when merging multiple filters

together.

�Creating Our Filter – an Epilogue
At this point, I would strongly recommend having a good read through the style sheet

for this demo – we’ve not touched on it in detail in our demo (for reasons of space), but

there are nevertheless two interesting concepts of note:

•	 Bennett has made good use of both :before and :after pseudo-

selectors for this demo – it goes to show that we don’t have to just rely

on filters to achieve our effect! The image is overlaid several times

using these selectors but are slightly displaced – this is needed to set

the base for our watercolor effect.

Chapter 5 Creating Filters

146

•	 We’ve made use of <feMerge> within our SVG filter to create our

filter effect, but we equally need to make use of background-blend-

mode, background-position, and mix-blend-mode to create the final

effect – simply creating and applying our filter isn’t always sufficient

to achieve the final result.

You will also notice that the demo isn’t actually 100% complete – inasmuch as the

.watercolor effect still uses three shortcut filter names! This is deliberate: it’s a useful

exercise to learn how to convert these filter shortcuts to SVG equivalents. It takes a little

trial and error, but two useful tips are the following:

•	 If you search online, you will see a number of sites where the owners

have created their own interpretation of well-known (or less well-

known) filters such as Amaro. This is perfect for working out what the

basic filter primitives of each filter should be, and which can act as a

starting point for your own design.

•	 Have a look at https://www.w3.org/TR/filter-effects-

1/#ShorthandEquivalents initially; it makes for some dry reading,

but gives all of the SVG filter equivalents for the shorthand properties

such as blur() or grayscale().

•	 If we use the brightness() filter that we used in our example but

wanted to change the level, then we simply replace the [amount]

value with the original value from the shorthand version. For

example, if we wanted a slightly darker version, we might have

specified brightness(0.9). Instead, we would translate this

as indicated in the example below, where two out of the three

<feFunc..> elements have been updated:

<filter id="brightness">

 <feComponentTransfer>

 <feFuncR type="linear" slope="0.9"/>

 <feFuncG type="linear" slope="0.9"/>

 <feFuncB type="linear" slope="[amount]"/>

 </feComponentTransfer>

</filter>

Chapter 5 Creating Filters

https://www.w3.org/TR/filter-effects-­1/#ShorthandEquivalents
https://www.w3.org/TR/filter-effects-­1/#ShorthandEquivalents

147

Have a go at making the change – the key to this is to not try to get an exact match,

but use it as a basis for creating your own filter designs. Remember: there is no right or

wrong answer – it’s all down to what you want to see as your final solution!

Okay – let’s move on: Many of our examples provide good visual interest, but they are

somewhat…well…static? Fortunately it’s easy to fix: we can use CSS animation to add a

transition effect, right? Well, yes – and perhaps not…before you ask, I’ve not lost the plot;

there is a real sting in this tale. Before we find out what, let’s quickly knock up a demo

that applies such a transition effect, so we can understand why this method isn’t the

most effective one to use.

�Animating Filter Effects
Animating any form of content can be a double-edged sword – add with care, and it can

really take a site to the next level; add it without some forethought, and people are likely to

vote with their feet! Unfortunately, it’s no different where SVG filters are concerned – for

some, the temptation might be to use JavaScript in some form, while others may use CSS.

There are a whole host of options open to us to animate SVG content – we’ll explore

this in more depth in Chapter 6, “Animating Content.” To give you a flavor of what is

possible, we’re going to knock up a quick demo that transitions a picture of an orchid

from gray to its more usual color of pink.

ANIMATING FILTERS

Let’s take a look at what is involved:

	1.	 We’ll start by extracting a copy of the animate folder from the code download

that accompanies this book – go ahead and store it at the root of our project folder.

	2.	N ext, open up animate.html, and add the following lines of code immediately

after the <h2> tags – we’ll start with defining our filter:

<svg>

 <filter id='grayscale'>

 �<feColorMatrix type='matrix' values='0.3333 0.3333 0.3333 0 0

0.3333 0.3333 0.3333 0 0 0.3333 0.3333 0.3333 0 0 0 0 0 1 0' />

 </filter>

</svg>

Chapter 5 Creating Filters

148

	3.	 We now need to apply it to our image – leave a line blank, then go ahead and

add the following code:

<div class="polaroid">

 Phalaenopsis orchid

</div>

	4.	S ave the file – if we preview the results, then hover over the image, we will see

it transition from gray to pink. Figure 5-9 shows this in action.

Figure 5-9.  Animating an SVG

It’s a great effect, right? We’re not using any JavaScript, so the code is kept nice and

light; our image fades from a gray to pink, which is perfect for browsing in a gallery.

However, there is a sting in this tail – not everything is as rosy as it seems…

Chapter 5 Creating Filters

149

�Is This the Right Solution?
We’ve just produced a great little simple demo of a close-up image of a Phalaenopsis

(or “moth”) orchid – as anyone who has read my books will know, I love orchids! At face

value, everything looks perfectly acceptable. Take a closer look at the code though – you

will see not one but two images in our code. This clearly isn’t good, so what gives?

Well, the real issue lies in the fact that we can’t animate an SVG filter using CSS

animation directly on an SVG filter (this doesn’t apply to CSS shorthand filters). It’s a real

pain, as it means we would be limited to using JavaScript-based methods to animate, or

we can implement a workaround by adding a copy of the image. We can then set one to

have the grayscale filter applied by default, with the other remaining as-is, and transition

between the two using a standard CSS transition, as indicated in Figure 5-10.

Figure 5-10.  Exploring our animation code

Clearly not an ideal solution – it works, but is not the most efficient! Fortunately there

is a better way to animate SVG; one option is to make use of the <animate> tag, or one of

the several SVG animation libraries available on the Internet.

We will revisit this, and more around animation, in more detail in Chapter 6,
“Animating Content.”

Chapter 5 Creating Filters

150

For now, let’s park this concept, and turn our attention to something more

practical – SVG filters can produce some really creative effects, but there are occasions

where we might have to think in more practical terms.

Fortunately this isn’t an issue with SVG filters: What better than to use blur() as an

example? We can use this to great effect as a background to a banner – to learn more,

let’s dive in to our next example to see what is involved in creating our filter effect.

�Creating a Practical Example
So far, we’ve learned about applying filters in a variety of different instances – from

changing a single color, through to mixing multiple primitives to create some interesting

effects. There is one more effect we should take a look at – in this instance, it includes

using another…image?

Yes, you hear correctly – we’re going to apply an image! We’ll use an image mask to

help create a blur effect as part of a hero banner. This effect is perfect for creating original

banners for use on websites or even content management systems such as WordPress.

We’ll use an image of a vintage camera (available from Flickr at https://flic.kr/p/

pQ1wbF) as a basis for this exercise – let’s dive in and take a look at what is involved.

APPLYING SVG FILTERS IN A PRACTICAL CONTEXT

Let’s make a start:

	1.	 First, go ahead and download a copy of the practical folder from the code

download that accompanies this book – save it in our project folder.

	2.	N ext, open up practical.html in a text editor – go ahead and add the

following lines; they will form the basis of our SVG filter:

<svg xmlns="http://www.w3.org/2000/svg">

 <defs>

 <filter id="blurlayer" width="110%" height="100%">

 </filter>

 </defs>

 </svg>

Chapter 5 Creating Filters

https://flic.kr/p/pQ1wbF
https://flic.kr/p/pQ1wbF

151

	3.	 For this filter, we’re not going to just use the equivalent of the standard

blur() – we’re going to mix in four primitives. The first makes use of

feColorMatrix – add these lines immediately after the opening <filter

id="blurlayer"...> statement:

<feColorMatrix type="matrix" values=".7 0 0 0 0 0 .7

0 0 0 0 0 .7 0 0 0 0 0 1 0" />

	4.	T he next primitive is the SVG equivalent of blur() – for this, add the following

code straight after the <feColorMatrix> statement (around line 13):

<feGaussianBlur stdDeviation="4" result="blur"/>

	5.	 We need to make use of a mask, so that the blur effect is limited to the

central band in our image – for now open up the mask.txt file from the

code download, then copy the contents and paste in immediately after the

<feGaussian> blur code line.

	6.	T he last primitive we need to add in is <feComposite> - for this, go ahead

and add the following line of code immediately after the mask from step 5.

<feComposite in2="mask" in="blur" operator="in" result="banner" />

	7.	 We now need to merge the filters together: it’s time to revisit using

<feMerge>! To achieve the right effect, go ahead and add in this code block

before the closing </filter> tag:

<feMerge result="merge">

 <feMergeNode in="SourceGraphic" />

 <feMergeNode in="banner" />

</feMerge>

	8.	L ast, but by no means least, we need to add in our banner – for this, go ahead

and add the following code after the closing </svg> tag, on or around line 27:

<section class="banner">

 <div class="sitetitle">

 <h1 class="">Classic Cameras</h1>

 <p class="byline">Timeless pieces from yesteryear</p>

 </div>

</section>

Chapter 5 Creating Filters

152

	9.	S ave the file – if we preview the results, we will see a picture of an old camera,

upon which is our “Classic Cameras” title on a suitably blurred background

strip, as shown in Figure 5-11.

Figure 5-11.  Applying filters

A finished version of this code is available in the code download, as practical –
finished example.html.

The combination of a classic camera, the soft black-and-white tones and blurred

title has a real vintage appeal and is just one way of making use of SVG filters in a more

practical context. This aside, this demo highlights some useful tips about merging filter

primitives, so let’s pause for a moment to examine them in more detail.

�Understanding What Is Happening
Throughout the course of this chapter, we’ve applied filters to a variety of different

uses, from adjusting a single color, through to what can only be described as a unique

watercolor effect! Our latest demo applies filters in a more practical use case, to create a

striking blur layer within a hero banner.

If we take a look at the code in more detail, we have a standard SVG tag defined,

inside of which is a definition block for our filter. Our first primitive, feColorMatrix, is

used to darken the blur effect slightly; without it, the banner won’t have quite the same

impact! The second primitive is self-explanatory – this one provides the blur effect; it is

the equivalent of applying blur(4) in a rule within a style sheet.

Chapter 5 Creating Filters

153

The effect that starts to bring it all together is the mask – this is applied as a data

URI. We’ve already talked about using data URIs (see back in Chapter 3, “Working with

Images and Text”) – you will notice that we have used a base-64 URI in this instance. Where

possible, the recommendation is not to use them; in this instance, as we are only using a

single black mask, and not a complicated image, then we can get away with using it.

The last two primitives, <feComposite> and <feMerge> have the effect of merging

our content together – the former takes the black mask and blur and creates a composite

image of both (similar to the flatten process when working with applications such as

Adobe Photoshop). The feMerge process then merges everything together to produce

the final result.

The mask image used in this demo was created with the online Method Draw
application, available at http://editor.method.ac/ – gone are the days
when we have to download and install applications; Method Draw is perfect for
creating all kinds of graphics with ease!

�Summary
One of the key strengths of working with SVG as a format is the ability to customize

images and graphics, without having to resort to image editors – working with filters is

no exception! We’ve covered a lot of ideas around how we can change the appearance of

any image using SVG filters, so let’s take a few moments to review what we’ve learned in

this chapter.

We kicked off with an introduction into the benefits of using SVG filters, before

reviewing what is currently available as CSS shorthand filters, and introducing the

primitives that make up SVG filters.

Next up came some examples of how we can apply filters – we started with the SVG

equivalent of the classic blur option as an example, before moving on to learn how to

change the color hue of an image. We then took a look at creating our own variations

of classic Instagram filters, as a way of mixing and matching multiple filter primitives,

before exploring how to merge and blend such filters together into one final version.

We then rounded out the chapter with a look at a practical use-case example of

creating filters, in the form of a blur effect in a hero banner; this illustrates how filters can

be used in all manners of different instances, and that we are only limited by the extent

of our imagination!

Chapter 5 Creating Filters

http://editor.method.ac/

154

Okay – it’s time to move on. We briefly touched on one subject in this chapter:

animation. The need to provide some form of animated content on any website

(no matter how small or large an effect), is quickly becoming a must, if we want to give

our projects an edge over other solutions. It’s time therefore to get a little animated

(oops – sorry!), and explore how we can start moving SVG content in the next chapter…

Chapter 5 Creating Filters

155
© Alex Libby 2018
A. Libby, Beginning SVG, https://doi.org/10.1007/978-1-4842-3760-1_6

CHAPTER 6

Animating Content
I don’t know about you, but I’m partial to a nice glass of wine – a nice rounded glass of

red goes down a treat, after a long day of developing code. It’s a good excuse to kick back,

relax, and dream of making lots of money – or at least I hope so! But I digress. At this

point, I suspect you’re wondering what wine might have to animating content (and in

particular, SVG graphics), but bear with me on this – let me reveal all.

Take a look at https://fournier-pere-fils.com – it’s a website for a wine producer,

based in the Sancerre region of France. The site may take a few minutes to complete

loading, but it is worth the wait! When it has loaded, it shows some great effects: just

imagine – sun shimmering through the leaves of the tree, early dawn mist, and not a soul

in sight. In fact, the only things we can see are two birds flying – and there lies the source

of my inspiration for my next demo…

�Animating with CSS
A closer look at the code behind the website for Fournier Père et Fils shows that the birds

are part of a 10-second video clip. Although I’m never quite sure about the virtues of

using video as a background, this site pulls off the effect very well: it’s kept deliberately

short, so loading times are not excessive.

But – what if we could use SVG to animate part of that image, such as the birds?

Well, one kind soul has already tried this out for us; take a look at https://codepen.io/

matchboxhero/pen/RLebOY. This design by Steven Roberts, a developer based in the

United Kingdom, shows it is possible – he’s used a suitably sourced background image,

and animates the birds over the top, using standard CSS animation.

https://fournier-pere-fils.com
https://codepen.io/matchboxhero/pen/RLebOY
https://codepen.io/matchboxhero/pen/RLebOY

156

I’ve created my own version of his example, using a different image (taken from

https://unsplash.com/photos/lVDnLUACI18) – the CSS has been cleaned up and

simplified (two birds, instead of his four), but otherwise shows a great effect that we can

use in future projects. Let’s take a look at it in more detail:

ANIMATING WITH CSS

For this next exercise, we’ll break with tradition and perform a review of the code – for

this, go ahead and extract a copy of the animatecss folder from the code download that

accompanies this book. Save the folder to our project area; let’s take a look at that code in

more detail:

	1.	 The markup in animatecss.html is a simple affair: we have a <div> that

acts as our container, inside which we have two individual bird containers

<div>s. Inside each bird-container <div>, we have an individual bird <div> –

these are for the birds; this arrangement allows us to animate them across the

screen and move their wings as they are flying.

	2.	 Next, let’s take a look at the style sheet – we have a whole bunch of style

classes, but the ones of interest to us are the ones beginning with bird-* or

bc-*, along with the three fly-* keyframe animations.

	3.	 We place our bird onto the background – if you take a look at the SVG, you will

see that we have 10 frames within it. Once we’ve worked out what size we

want our frame to be, we use this to calculate the position of the next frame in

our demo.

	4.	 The animations are managed in two different places – we control the flapping

wings with the fly-cycle keyframe animation; we use the animation-

timing-function to step through each frame, much like flicking through the

pages of a notebook.

	5.	 On its own the fly-cycle animation isn’t enough – to move the birds across the

screen, we implement the fly-right-one and fly-right-two keyframe

animations. The timings and delays are such that it gives the effect of the birds

meandering across the screen, as shown in Figure 6-1.

Chapter 6 Animating Content

https://unsplash.com/photos/lVDnLUACI18

157

Although our demo appears to require a fair amount of code, much of it follows

standard CSS animation principles – if you’ve spent any time animating content with

CSS, then many of these principles should not be totally unfamiliar – we’ve applied two

animations using named keyframes and set appropriate duration, delay, and timing counts.

Looking at the bigger picture though, CSS animation has indeed improved

immensely over the last few years; it is fast reaching a stage where it will start to really

challenge JavaScript for animation. That said, it still has some weaknesses – for example,

it can’t animate attributes such as ; this requires JavaScript. This clearly will have

an impact on how we animate content, so with this in mind, let’s take a look to see what

this means in practice.

�Understanding the Different Methods
Where possible, I always prefer to work with CSS when animating content – there are

some clear benefits to using this approach, particularly when working with SVG:

Figure 6-1.  Our finished version of flying birds demo

Chapter 6 Animating Content

158

•	 If you like the syntax of CSS, and most of your design work uses it,

then it makes sense to use it for animation;

•	 Your project uses inline SVG, and you only need it to animate basic

properties, such as fills or strokes;

•	 You want to make use of browser optimizations when working with

CSS animation.

Sometimes though we might have to resort to using a JavaScript-based solution –

this is particularly true if our project is fairly complex, we need to use more heavyweight

tools, and we don’t want to have to worry about matching timings for multiple elements.

If we must resort to using JavaScript, then what does this mean for us? Well, we have

a few routes we can take (although it’s likely we may use a mix of all three in reality):

•	 <animate> - SVG has its own built-in animate tag; this means we can

keep our animation within the SVG and do not have to rely on third-

party libraries to manage animation;

•	 Plain JavaScript – most properties can be referenced using standard

JavaScript syntax;

•	 jQuery or third-party library – this route opens up a host of

opportunities for us, such as using the likes of jQuery or the popular

Snap.svg library. This places an additional overhead in terms of

importing the library but will often remove some of the manual grunt

required in creating the animation.

So – we have a few options available to us; which should we use? Clearly this will

depend on the nature of our requirements (I feel “how long is a piece of string?” or

“what are you trying to achieve?” questions coming at this point!). To get a flavor of what

is available, we’ll run through using examples of each route throughout the course of

this chapter – we’ll begin with a look at transforming content using the CSS transform

method.

�Transforming SVG Elements Using CSS
Cast your mind back to Chapter 4 – remember the preserveAspectRatio demo we built,

which featured an image of an apple? I only ask, as it’s going for an en-core (oops, sorry!)

in our next demo.

Chapter 6 Animating Content

159

If we were to keep to a pure SVG solution, then we would look to use a tag such as

<animateTransform>; this will work perfectly well, but it is overkill for our needs. Instead,

we can simply make use of the standard CSS transform attribute – this is just as good,

and would look something like this within code:

.406-87.378z" transform="translate(-181.4 -224.71)"/><path

This is a perfect example of a transformation within SVG – this is one of four options

available for use. Each of them works in a similar fashion to CSS but use different

arguments, which must be separated by whitespace or a comma. We can see all four

summarized in Table 6-1.

Table 6-1.  Transformation Options for SVG

Type of transform Purpose of function

translate(<tx> [<ty>]) Move a shape to a specified set of coordinates – the tx value is along

the x-axis; the (optional) ty value is for the y-axis.

rotate(<rotate-angle>

[<cx> <cy>])

Rotate a shape x degrees, around point 0,0, or the cx and cy values

(if they have been specified).

scale(<sx>, [<sy>]) Scale a shape up or down in size – the values specified represent the

scaling values along the x- or y-axes respectively.

skewX(<skew-angle>)

skewY(<skew-angle>)

Skew an image on either the x- or y-axes, as appropriate.

matrix(a,b,c,d,dx,dy) Define a custom transform using mathematical functions such as cos()

or sin() – preference is to use transforms already listed in this table, if

they can achieve the desired result.

For a detailed explanation of the math behind how transforms work, it’s worth
having a look at the article on CSS-Tricks.com, by Ana Tudor, at https://css-
tricks.com/transforms-on-svg-elements/.

We are by no means limited to just applying a single effect though – we can chain

multiple transforms to achieve more complex results. All we need to do is simply leave

a space between each effect; each will be executed in turn, so it’s important to get the

order right!

Chapter 6 Animating Content

http://css-tricks.com
https://css-tricks.com/transforms-on-svg-elements/
https://css-tricks.com/transforms-on-svg-elements/

160

To see what this means in practice, let’s pause for a moment and work through a little

demo. For this, we’ll reuse that apple from Chapter 4, as a basis for combining a couple

of transforms to rotate and move it on screen.

TRANSFORMING CONTENT

Let’s make a start:

	1.	 Go ahead and extract a copy of the transform folder – save it (and the files

within) to the root of our project area.

	2.	 Next, open a copy of transform.html in your text editor, then look for this

code, on or around line 10:

preserveAspectRatio="xMidYMid meet">

	3.	 We’re going to add a transform to the main SVG element – in our example, we’ll

rotate it by 15 degrees. Add the highlighted code to our markup, then save the file:

<svg width="200" height="200" xmlns="http://www.w3.org/2000/

svg" viewBox="0 0 300 550" preserveAspectRatio="xMidYMid meet"

transform="rotate(15) translate(20, 30)">

	4.	 Go ahead and preview the results – if all is well, we should see something akin

to the screenshot shown in Figure 6-2.

Figure 6-2.  Transforming our apple SVG image

Chapter 6 Animating Content

161

This was admittedly a simple change to make, but we’re only scratching the surface

of what is possible – why not try using one of the other transformation commands to

see what happens or chaining multiple ones together? Try skewX(30) for example, – the

result will put a whole new slant on things, so to speak!

As an aside – If we had to keep to a pure SVG solution, then take a look at
transform-alternative.html in the code download; this is our apple demo
reworked to use SVG for the main rotation effect. Note though, that you may
see differences in behavior (such as here); it’s worth bearing this in mind when
developing your solution.

Okay – let’s move on: if our demo had been more complex, then a CSS transform

statement might not have been sufficient; instead, we need something that would

cope with more complex animations. Fortunately, SVG has several options available,

such as <animate>, <animateMotion>, and <animateTransform>. I feel it’s time for

another demo (and yes, sorry, pun intended) – let’s dive in and take a look at this in

more detail.

�Moving Content with <animate>
In the previous demo, we touched on the use of transform to manipulate the position of

our apple – for a simple demo, this CSS attribute works very well. However, what if our

demo had been more complex, and that a simple CSS attribute would not be sufficiently

powerful to handle the animation…?

Well, don’t worry – SVG can be animated using animation elements; these were

defined originally in the SMIL Animation specification, but to which SVG has added

some extensions that are compatible with the original specification.

Put simply, there are three SVG elements we can use when animating content:

<animate>, <animateMotion> (for animating content on a motion path), and

<animateTransform>. For now, we’ll focus on using simpler <animate>, which takes

a number of parameters – these define the element to animate, where it should be

animated, and for how long this animation should last. A full list of the properties is

summarized in Table 6-2.

Chapter 6 Animating Content

162

Table 6-2.  Properties for <animate>

Property Function

attributeName Required – Must be a valid attribute on the element the animation is being

applied to.

From Optional – If left out, the animation will start at the current values of the

selected attribute.

to Required – The value the attribute should be animated to.

dur Required – The duration of the animation; we can use time values such as

2s or 1300ms.

href Required – If our animation is outside of the element being animated, we

can specify the ID of the element.

begin / end Optional – Specifies when the animation should begin or end, such as

on a click.

fill Optional – Specifies what should happen when the animation is completed,

such as freeze (remain as the animation ends), or remove (remove any effect

the animation had on our element).

Now – anyone spot that I dropped a pun toward the end of the previous section, but

that I didn’t allude to what that pun was? Well, it’s time to reveal all – it seems somewhat

apt that our next demo will feature a working clock, and that it’s time (sorry!) to take a

look at how the properties of <animate> work, in more detail.

�Creating a Clock Using <animate>
When working with SVG animation, there are a whole host of use-case scenarios where

animation could be applied – take, for example, the Fourier Père et Fils site we visited

at the beginning of this chapter, which adds little extra touches that give the site some

added sex appeal.

Sometimes though we may have a more practical need to animate SVG – for our next

demo, we’re going to put our spin on a demo created by Mohamad Mohebifar, which

you can see at https://codepen.io/mohebifar/pen/KwdeMz. This is a basic clock, but

I’m going to tweak the styling, and use JavaScript to insert longer lines at the 3, 6, 9, and

Chapter 6 Animating Content

https://codepen.io/mohebifar/pen/KwdeMz

163

12 o’clock positions. It’s worth taking a closer look at this demo, as it makes good use of

JavaScript to help animate the hands – we’ll explore this in more detail at the end

of the exercise.

USING <ANIMATE> AND JAVASCRIPT

Okay – let’s crack on with our demo:

	1.	 We’ll start by extracting a copy of the animatetag folder that is available in

the code download that accompanies this book – save it in our project folder.

	2.	 Next, we need to start adding our markup – the first is add a background

shadow effect; add the following code immediately after the opening

<svg> tag:

 <filter id="innerShadow" x="-20%" y="-20%" width="140%" height="140%">

 <feGaussianBlur in="SourceGraphic" stdDeviation="3" result="blur"/>

 <feOffset in="blur" dx="2.5" dy="2.5"/>

 </filter>

	3.	 Next, we’re going to add the two circles that form our clock – drop these two

lines in immediately after the closing </filter> tag:

 <g>

 �<circle id="shadow" style="fill:rgba(0,0,0,0.1)" cx="97" cy="100"

r="87" filter="url(#innerShadow)"></circle>

 �<circle id="circle" style="stroke: #FFF; stroke-width: 5px;

fill:#c0c0c0" cx="100" cy="100" r="80"></circle>

 </g>

	4.	 The third block contains the code that displays (and animates) the hour, minute,

and second hands – go ahead and add this code in, immediately before the

closing </svg> tag:

 <g>

 �<line x1="100" y1="100" x2="100" y2="55" transform="rotate(80 100

100)" style="stroke-width: 3px; stroke: #fffbf9;" id="hourhand">

 �<animatetransform attributeName="transform" attributeType="XML"

type="rotate" dur="43200s" repeatCount="indefinite"/>

 </line>

Chapter 6 Animating Content

164

 �<line x1="100" y1="100" x2="100" y2="40" style="stroke-width: 4px;

stroke: #fdfdfd;" id="minutehand">

 �<animatetransform attributeName="transform" attributeType="XML"

type="rotate" dur="3600s" repeatCount="indefinite"/>

 </line>

 �<line x1="100" y1="100" x2="100" y2="30" style="stroke-width: 2px;

stroke: #C1EFED;" id="secondhand">

 �<animatetransform attributeName="transform" attributeType="XML"

type="rotate" dur="60s" repeatCount="indefinite"/>

 </line>

 </g>

	5.	 Save the file – if all is well, we should see a clock ticking, when previewing the

results in a browser, as indicated in Figure 6-3.

Although we now have a working clock, some of you may have noticed the presence

of this line in our code:

<script src="js/animatetag.js"></script>

Figure 6-3.  Creating an SVG clock using <animate>

Chapter 6 Animating Content

165

The sharp-eyed will have noticed we’ve not made reference to this in our demo – it is

with good reason: our demo is about using <animate> so we should, of course, focus on

this first! Nevertheless, we can’t achieve the effect without some JavaScript, so let’s pause

for a moment and take a closer look at our code.

�Dissecting Our Code
If you cast your mind back to Understanding the different methods, from earlier in this

chapter, you will remember that we touched on several different ways to animate SVG

content. In our clock demo, we’ve used two methods – not only did we use the SVG

<animate> tag, but also plain JavaScript.

If we delve into the code, we can see there isn’t anything out of the ordinary; we kick

off with creating an array, into which we cache the selectors for the hour, minute, and

second hands.

We then work out the current time, based on using Date() – this is then used to set

where the hour, minute,, and second hands should be displayed on the clock face; we

pass each value into the hands[] array. We then set the position of each hour on the

clock – this is done in two stages: the first for statement takes care of any number that is

not 3, 6, 9, or 12. The second function fills in the gaps with the remaining numbers, to

make up our clock face.

Now – creating a clock is great, but it’s still something of a theoretical example: how

about creating something a little more down-to-earth and practical? Well, one example

that comes to mind is a loader – you know, the little spinner we get when waiting for

content to be displayed on anything less than a superfast connection! The <animate> tag

is perfect for this, so let’s dive in and take a look at an example in more detail.

�Creating Animated SVG Loaders
If you spend any time surfing the web, then you will no doubt come across a spinning

icon of some description; a search using Google will show dozens of examples created

using the likes of CSS or a graphics package such as Photoshop.

As a format, SVG is perfect for creating animated spinners, if for one reason

only – their responsive nature means we can create and adjust their size without any loss

of quality. To illustrate this in action, we’re going to build a quick demo that shows off

three different types of spinning icons, as a Codepen demo.

Chapter 6 Animating Content

166

CREATING A LOADER

Let’s make a start on creating that demo:

	1.	 First, browse to Codepen at https://www.codepen.io, then click

on Create.

	2.	 From the loader folder in the code download that accompanies

this book – copy and paste the contents of html.txt into the

HTML pane.

	3.	 From the code download – copy and paste the contents of css.txt

into the CSS pane.

You might want to click on Change View | Editor Layout, then right-click to change
the page layout if it makes it easier to view the demo.

	4.	 Go ahead and save the pen as Anonymous (this is perfectly fine for the

purposes of this demo).

	5.	 If we preview the results in a browser, we should see three random loaders

running, as indicated in Figure 6-4.

Figure 6-4.  Creating loaders using SVG

Chapter 6 Animating Content

https://www.codepen.io

167

�Understanding How the Code Works
Although this appears to be a simple demo, with little CSS in use, much of the magic

takes place within the SVG elements we’ve added to the HTML pane. Let’s take a

moment to explore this code in more detail, as it contains some useful tips for us:

•	 All three spinners are made up of nothing more than standard SVG

elements, with an <animate> tag embedded within – in this case,

we have <circle> (in the first spinner), <path> (used in the middle

spinner), and <rect> (used in the right spinner).

•	 You will notice that in comparison to other demos, the initial <svg>

tags may appear stripped back, and to be missing some of their

attributes. This is intentional – not all of the tags are required for an

SVG to be rendered, and that what we have here is sufficient for our

needs. Indeed, specifying size attributes within the SVG would be

pointless, as they would be overridden by our CSS style rules!

•	 If we take a closer look at each animate statement, notice

though how we’re using two different tags to animate the SVG

elements? In the first spinner we make use of the <animate> tag;

the remaining two make use of <animateTransform>. There is a

subtle but important difference between the two – the first will

animate any property or attribute of an element (including to a

new location on screen). Unfortunately IE9-11 don’t support CSS

transforms on SVG elements, so we must use <animateTransform>

instead, if our project requirements dictate these browsers should

be supported.

•	 A closer look at these statements will show that we have some

common attributes in use: we, of course, have attributeName

(for the attribute being animated), the dur property to control the

length of the animation, and the values property to determine

how the animation should run. All three demos make use of the

<begin> property, to introduce a slight delay – this is particularly

important for the third demo; otherwise the animation will look

rubbish!

Chapter 6 Animating Content

168

There is one very important tip that we have yet to cover – all of the animations we’ve

created thus far have been single animations. What if we needed to create something

that required multiple animations, such as moving and scaling a box at the same time?

Much of this will depend on how we propose to animate our SVG element – can we

use CSS, or do we need to use native SVG or a JavaScript solution instead? Each will offer

its own benefits – there is one crucial point though, which must be considered over and

above any solution: Question is, any ideas as to what that might be…?

�Managing Multiple Animations
Well – what is the answer to that question, I hear you ask? It’s simple – it’s all

about timing.

Okay, at the risk of stating the obvious, timing is indeed key to running multiple

animations; it’s where we not only need to understand our code, but also the impact that

code has as part of the bigger picture.

It’s important to understand that SVG animations (and for that matter, CSS-based

ones), are always processed in a single pass. This means we need to be mindful of what

happens, and when – to control the flow, we can introduce delays using properties such

as animation-delay (CSS), or delay (SVG).

I’m a great believer in the KISS principle (Keep it Simple…you get the idea!) – for me,

a more effective animation is one that provides a nice touch rather than one that takes

over everything else. Remember that example of the flying birds we talked about at the

beginning of this chapter? This (for me) is a great example of how simple animation

works well – not only is the overall design kept simple, but the SVG animations do not

overtake the overall design.

So – how could we translate this into real code? Well, assuming we decide to use

native SVG as our solution, one approach we can use is this:

•	 We first encompass our SVG element within a set of <g> or group

tags – this is to prevent cross-contamination with other SVG

elements.

•	 We then add our second animation in immediately after our closing

shape tag, but before the closing </g> tag.

Chapter 6 Animating Content

169

Seems simple enough, right? This is ideal for instances where we might only want a

couple of animations per SVG element, but what if we needed more? Take, for example,

this Codepen demo I’ve put together, at https://codepen.io/alexlibby/pen/OvjEOR,

and a version of which is reproduced below:

<svg width="275" height="275">

 <rect x="10" y="10" width="20" height="20"

 style="stroke: black; fill: slategrey; style: fill-opacity: 0.25;">

 �<animate attributeName="width" attributeType="XML" from="20" to="200"

begin="0s" dur="8s" fill="freeze"/>

 �<animate attributeName="height" attributeType="XML" from="20" to="150"

begin="0s" dur="8s" fill="freeze"/>

 �<animate attributeName="fill-opacity" attributeType="CSS" from="0.25"

to="1" begin="0s" dur="3s" fill="freeze"/>

 �<animate attributeName="fill-opacity" attributeType="CSS" from="1"

to="0.25" begin="3s" dur="3s" fill="freeze"/>

 </rect>

</svg>

At first glance, you might be forgiven for thinking this would collapse into a heap,

with four animations clashing! But it doesn’t – if you look carefully at the code, you

will see that delays have been introduced, to help manage the effect. We are also using

two types of animation – it’s the same <animate> tag in use, but we’re animating both

XML and CSS properties (hence the use of animateType). This shows that, with some

careful planning, we can produce effects that work well, and achieve the desired

result.

At this point let’s change tack – we’ve used the native SVG <animate> and

<animateTransform> elements to add motion to our SVG elements. This works very well,

but there will come a point where we may want to animate something more complex,

which will take us beyond the limits of what these two elements can handle.

Fortunately, we are not short of alternatives – these range from the popular

Snap.svg library through to heavyweight alternatives such as D3 or GSAP. We’re

spoiled for choice, so without further ado, let’s take a look at a selection of the possible

contenders in more detail.

Chapter 6 Animating Content

https://codepen.io/alexlibby/pen/OvjEOR

170

�Working with Third-Party Libraries
If we’re working on a complex animation that needs the power of a heavyweight tool,

then JavaScript is a good contender. There is a downside to using it though – it was never

designed with animating SVG in mind, and it was developed as something more of a

generic tool for manipulating content within the browser.

Don’t get me wrong – JavaScript is perfectly capable of animating SVG content, but

it is not the only heavyweight option available: there are others we can use, which make

the effort required easier. Let’s take a look at the list, which includes the following:

•	 Two, available from https://two.js.org/ – a 2D library that requires

the use of Underscore.js and Backbone.js events;

•	 SVG.js, hosted at http://svgjs.com/ – a lightweight SVG animation

package, which can achieve the same effects as some of its bigger

brothers, but which has been optimized for speed.

•	 Snap.svg, downloadable from http://snapsvg.io/ – arguably the

most well-known and popular library available for animation (we’ll

use it in a demo later in this chapter).

•	 SnapFoo (http://yuschick.github.io/SnapFoo/) – a relatively

new library that extends the power of Snap.svg animation, to make it

easier to develop using the library.

•	 D3 (htp://d3js.org/) – this veteran library has been around since

2011; it’s used for producing dynamic data visualizations using SVG,

HTML5, and CSS3.

•	 GreenSock Animation Platform (or GSAP – https://greensock.

com/) – describes itself as a high performance, professional grade

animation library, which can be used to animate SVG content.

•	 Velocity (available at http://velocityjs.org/) – created by Julian

Shapiro, this animation engine has the same API as jQuery’s animate

and can be used as a drop-in replacement for jQuery.

•	 Vivus (from https://maxwellito.github.io/vivus/) – this library

provides a different take on SVGs; it allows you to animate them as if

they were being drawn.

Chapter 6 Animating Content

https://two.js.org/
http://svgjs.com/
http://snapsvg.io/
http://yuschick.github.io/SnapFoo/
http://d3js.org/
https://greensock.com/
https://greensock.com/
http://velocityjs.org/
https://maxwellito.github.io/vivus/

171

•	 Anime.js (http://animejs.com/) – this lightweight animation library

includes support for SVG and works in all of the more recent browsers.

Note  You may hear of Raphael – this was the predecessor to Snap.SVG, and caters
for very old browsers, such as Firefox 3. It has not been updated for several years.

There are dozens of other libraries available for SVG, so it is definitely worth a look

online to see what is available – as with any option, it’s recommended you try out a few

possibilities to see how they perform, before settling with your favored choice(s) of library.

To set you off on that path of discovery, we’re going to dive into a quick demo that

introduces of the more popular options – Snap.svg. Although it looks and works in the

same way as jQuery, it doesn’t require that library to operate; it does make it much easier

to manipulate graphics! Let’s take a look at the library in more detail, to see why it is so

easy to use.

�Introducing Snap.svg
If you spend any time animating SVG content, then you will eventually come across

Snap.svg. Originally created by Dmitry Baranovskiy, this library can trace its background

to the days of Raphäel.js, which was originally released back in 2008 and soon became

very popular.

It offered great support for browsers as far back as IE5.5, but this ultimately proved

to be too limiting – it couldn’t keep up with what users were demanding, while still

providing that backward compatibility; a complete rewrite to take advantage of what

SVG can offer, resulted in what we now know as the Snap.svg library.

With the introductions out of the way, now is a good time to take a look at how

it works – if you look closely at the code in the next demo, you will soon see some

similarities to jQuery! We don’t need to make use jQuery though, which makes it easier

to use: to see what I mean, let’s dive in and take a closer look.

INTRODUCING SNAP.SVG

Let’s make a start:

	1.	 We’ll begin by extracting a copy of the snap folder that is in the code download

that accompanies this book – save it in our project area.

Chapter 6 Animating Content

http://animejs.com/

172

	2.	 Next, open up the snap.html file, then add the following line of code

immediately after the <h2> tags:

<div id="iconDiv"></div>

	3.	 We have our SVG content in place, but need to animate it – for this, go ahead

and add the following code to a new file, saving it as snapsvg.js in the js

subfolder with our snap folder:

window.onload = function () {

 var s = Snap("#iconDiv");

 Snap.load("./img/icon.svg", function(f) {

 whiteRect = f.select("#whiteRect");

 icon = f.select("#icon");

 icon.hover(function() {

 whiteRect.animate({y:960}, 500, mina.elastic);

 }, function() {

 whiteRect.animate({y:977.36218}, 500, mina.elastic);

 }

);

 s.append(f);

 });

};

	4.	R emember to save both files – if we now preview the results in a browser, we

should see the screenshot shown in Figure 6-5.

Figure 6-5.  Our finished Snap.svg demo

Chapter 6 Animating Content

173

Try hovering over the white square in the middle – you will see it move up and down;

this movement will feel very elastic, thanks to the mina.elastic easing that has been

applied in our code.

This is one of several easings that come built-in to the Snap.svg library; we could

use one of these, but with a little help, we can create our own custom easing with little

difficulty. Let’s take a look at how we might achieve this – there are several options

available, which are all worthy of consideration.

�Applying Easing Effects to Elements
When animating an element, we might be content with simply letting it move from

position X to position Y. In many cases, this will suffice – there are occasions when we

might want to add a little extra effect to that movement.

We can of course achieve this with an easing effect – Snap.svg comes with some

built-in options such as easeIn, elastic, or bounce. These are similar to easings you

might use elsewhere, such as jQuery – trouble is, things will get a little stale if we limit

ourselves to just these attributes.

To see the built-in easing functions in action, head over to this Codepen by Mike
Tempest: https://codepen.io/mike-tempest/pen/myvbrw

We can easily change this – with a little extra work, it’s possible to add in a

custom easing effect using a cubic-bezier curve; don’t worry, this is easier than it

sounds! Let’s dive in and take a look – to start with, we need to get our cubic-bezier

values first.

�Getting Prepared
The core part of our next demo centers on the use of a cubic-bezier curve – for the

uninitiated, and assuming we had to plot it on a graph, our curve action would look

something like that shown in Figure 6-6.

Chapter 6 Animating Content

https://codepen.io/mike-tempest/pen/myvbrw

174

Unfortunately, a chart on paper won’t mean a great deal – to see how it works in

action, we need to head over to http://easings.net/#easeInBack, which shows an

example of this easing effect. If we wanted to refine its appearance, we can also do this –

browse to http://cubic-bezier.com/#.6,-.28,.735,.045, and slide around the circles

within the main chart to fine-tune the values.

Assuming we now have our cubic-bezier values, we now need to implement it in

our code – for this, we can make use of a simple plug-in created by Arian Stolwijk, and

which is available at https://github.com/arian/cubic-bezier. I’ve included a refined

version of this plug-in in the code download – the original code is a few years old, and

contained a function that has been found to be buggy and can be safely removed.

Okay – let’s crack on: we now have our values, so time for us to get stuck into some code!

EASING CONTENT

For this next exercise, we’re going to add a custom easing, based on a cubic-bezier

curve – let’s make a start:

	1.	 First, take a copy of the snap folder from the code download that accompanies

this book – save it as snapeasing in our project folder.

	2.	 Our cubic-bezier plug-in is in the js subfolder – we now need to tie this into

our demo. For this, go ahead and add the following lines of code, immediately

before the closing </body> tag in our demo:

 <script>

 var timing = bezier(0.6, -0.28, 0.735, 0.045);

 var paper = Snap(800, 800);

 var r = paper.rect(0,0,200, 200).attr({fill: "darkslategrey" });

 r.animate({ x: 600 }, 1000, timing);

 </script>

Figure 6-6.  Our cubic-bezier curve – Source: easings.net

Chapter 6 Animating Content

http://easings.net/#easeInBack
http://cubic-bezier.com/#.6,-.28,.735,.045
https://github.com/arian/cubic-bezier
http://easings.net

175

	3.	 Save the file – if all is well, we will see a dark gray square from the race across

the screen (Figure 6-7), using the new cubic-bezier easing effect we’ve just

added to our code.

Figure 6-7.  Applying a custom easing effect

This is a somewhat more complex yet useful way of adding a custom easing effect to

any shape we animate using Snap.svg – it means we are not forced to have to use one of

the built-in methods and can begin to use something a little more original. Although the

code isn’t extensive (at least within the main markup file), it highlights a couple of useful

tips – let’s dive in and take a look at our code in more detail.

�Exploring the Code in Detail
Take a look at the code in the main markup file – our main markup now contains the

code to initiate a rectangular SVG shape, using Snap.svg. This uses similar principles

to the previous demo, except this time, we’ve added an extra function to translate our

cubic-bezier value into something that can be understood by Snap.svg.

The key to making this work lies in the function created by Arian – we’re using a

simplified version to allow for changes to browser support since the original function

was created. The only way to see how this works is to dive into your browser’s Developer

Console – it’s outside of the scope of this book, but if you want to get stuck into the

depths of the code, you can see evidence of it in the Sources tab if using a browser

such as Google Chrome. In short, we use the bezier plug-in to convert the values into

something that can be rendered by Snap.svg, and apply this as an additional parameter

to the animate statement in our code.

Chapter 6 Animating Content

176

Thinking further afield, we may prefer to dial things back a bit, and use something a

little simpler; fortunately, there is a plug-in available that reworks the well-known easing

equations originally created by Robert Penner. The plug-in can be downloaded from

https://github.com/overjase/snap-easing/, and it is as simple as adding a link to it

in the markup, then specifying the name in place of our existing easing code.

If you really fancy getting down and dirty with the source code for
Snap.svg easings, then the functions for the built-in easings are available at
https://github.com/adobe-webplatform/Snap.svg/blob/master/
src/mina.js – head to the bottom of the file for the code.

Okay – we’ve come to the end of our journey through animating SVG content:

there is one small area we should cover off before moving onto the next chapter in our

adventure. We’ve explored some of the options around how we animate content, but it’s

worth taking a few moments to understand the impact of using each option, and how we

can go about selecting the most appropriate solution for our needs.

�Choosing Our Route – an Epilogue
Over the course of this chapter, we’ve explored a variety of different options to animate

our content – each has its own benefits, with some being more suited than others to

particular circumstances.

The question is – how do you choose which route to take? Is there a right or

wrong answer, or does it depend on our requirements? These are valid questions –

only you can answer, but here’s hoping the following pointers might help guide

you to that answer:

•	 The first question is – how simple is your animation? Is it just one

layer of animation – if so, then CSS is probably a good bet.

•	 Does your project require multiple instances of the same animation,

or a host of different animations? Should these animations be

chained, or run individually? Again, CSS is likely to be a good

candidate here – timings may be an issue, but if you’re not chaining

too many, then you should be OK.

Chapter 6 Animating Content

https://github.com/overjase/snap-easing/
https://github.com/adobe-webplatform/Snap.svg/blob/master/src/mina.js
https://github.com/adobe-webplatform/Snap.svg/blob/master/src/mina.js

177

•	 Should your animations be fired at the point of your user interacting with

an element, such as a hover or click? At this point, we’ll almost certainly

need JavaScript to handle the event, but can get away with CSS for the

animation effect, rather than having to use JavaScript to provide it.

•	 Is your animation very complex, with multiple animations being

chained, and where timing is super critical? If this is the case, then

we will likely have to resort to using either JavaScript/jQuery, or one

of the third-party libraries such as Snap.svg. The former is possible,

but given that the libraries we’ve talked about are dedicated to

animation, it makes sense to use these instead.

•	 Consider whether your SVG element is one you could reuse at a later

date, or in multiple places in your project. If either are true, or you

have a particular preference to using native SVG, then the <animate>

tag (or one of its sister tags, such as <animateTransform>) could be a

better option at this point.

The old adage “there is never a right or wrong answer” frequently rings true in cases

like this; there may be occasions where the right solution to animating your content is

obvious, but more often than not, there will be different ways to crack that nut!

Using an SVG animation tool – something to consider:

Throughout the course of this chapter, we’ve explored how to animate SVG content
manually, using CSS, the <animate> tag, and through the use of CSS and JavaScript.
As an alternative, it’s worth keeping an eye out for an upcoming project – SVGator
(https://www.svgator.com). The website is still in beta at the time of writing but
claims to make SVG animation easy as drag and drop; early indications are promising!

�Summary
Mention the word animating, and there would have been a time when the only answer

might have been JavaScript – a perfectly valid option, but not always the right one today!

Over the course of this chapter, we’ve discovered the ups and downs of how to animate

SVG content, and we’ve seen there are other options available, such as native SVG tags or

using CSS. Let’s take a moment or two to review what we’ve covered in this chapter.

Chapter 6 Animating Content

https://www.svgator.com

178

We kicked off with a quick look at an example to understand how SVG could replace

options such as video, before summarizing each of the available options for animating

SVG content. We explored the first option, animating using pure CSS, in more detail,

before moving onto covering the native SVG <animate> element. We created a couple of

examples to understand how this works in more detail, before quickly exploring how we

might manage multiple animations.

We then moved onto looking at the use of third-party libraries, such as Snap.svg,

before learning how to apply them in a practical use-case scenario. We then dived into

learning how to add that extra touch using custom easings, before rounding out the

chapter with a section on determining how to choose the best option to use when it

comes to animating SVG content.

Phew – we’ve certainly covered a lot: our journey doesn’t stop here though! Throughout

the course of the book, we will cover a lot of code in various demos – the one key thing we

should always to is to ensure it is optimized to be as efficient as possible. There are a few

tricks we can use when it comes to SVG, which we will explore in the next chapter.

Chapter 6 Animating Content

179
© Alex Libby 2018
A. Libby, Beginning SVG, https://doi.org/10.1007/978-1-4842-3760-1_7

CHAPTER 7

Optimizing SVG
So far, we’ve learned how to create basic shapes, manipulated website content, and

applied effects to imagery – this is great, but there is one thing we should also consider:

some SVG content can be a little bloated, so there is always room for optimizing our

content. Over the course of the next few pages, we’ll look at some of the pain points

where content might be less than optimal, and cover some of the tips and tricks we can

use to ensure our content is working at optimal efficiency.

�Exporting SVG Images for Use
When working with SVG, it’s all too easy to simply hit the export button to save content

as an SVG file – most packages such as Illustrator, Sketch, or even the online tool Vectr

make it a real cinch to save our work.

The trouble is, we will frequently end up with bloated content – take, for example,

this extract of code from an SVG image:

<?xml version="1.0" encoding="utf-8"?>

<!-- Generator: Adobe Illustrator 16.0.0, SVG Export Plug-In . SVG Version:

6.00 Build 0) -->

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/

SVG/1.1/DTD/svg11.dtd">

<svg version="1.1" id="Layer_1" xmlns="http://www.w3.org/2000/svg"

xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px"

 �width="612px" height="792px" viewBox="0 0 612 792" enable-

background="new 0 0 612 792" xml:space="preserve">

It is perfectly valid code, but most of it is unnecessary and can be safely discarded. In

many cases, we can reduce this through more judicious use of features in our SVG; as an

example, Sarah Soueidan has a great article on how making some simple changes in an

application such as Illustrator can already begin to reduce our code.

180

You can see the full article at https://www.sarasoueidan.com/blog/svg-
tips-for-designers/ – it is a couple of years old, but the principles within are
still relevant.

Getting to the point where we have an exported image will, of course, vary from

package to package; the exact processes required are outside of the scope of this book.

We will going forward assume we have something that has already been optimized and

is ripe for optimization. There will be plenty we can do, but before we do so, there is one

thing we should cover off first – that is answering the question: Why is it important to

optimize our SVG content?

�Understanding the Importance of Optimization
At this point, we now have a set of exported images – we can drop these into a page, add

some content, and away we go, right…? Wrong. Sure, our page will display – people will

see our content…eventually. But I will lay very good odds that it will be slow, cumbersome,

and in many cases, people will vote with their feet. As the developer Brad Frost once said:

The road towards better performance doesn’t start with developers or technology

stacks (though I’m certainly not suggesting those things are unimportant). It begins with a

shared interest on everyone’s part in making a product that’s lightning fast.

I recommend reading the original article by Brad Frost at http://bradfrost.
com/blog/post/performance-as-design/ – it may be a few years old, but
many of the principles still hold true!

To prove how important it is, imagine you have a small site, with only 50 pages.

Navigating this won’t be an issue, but imagine this has been scaled up by a factor of 60. It’s

going to start getting slower to navigate – and that may only be static pages! Just imagine

what it would be like for a dynamic site serving in the region of 500,000-plus products…

In an age where mobile is rapidly overtaking desktop as a platform of choice,

performance is king – pages that have not been optimized will directly affect the user

experience and have an impact on page metrics. This may be less apparent on desktops,

but the impact will be exacerbated by the lower connection speeds on mobile devices,

which is now the platform of choice for many individuals around the world.

Chapter 7 Optimizing SVG

https://www.sarasoueidan.com/blog/svg-tips-for-designers/
https://www.sarasoueidan.com/blog/svg-tips-for-designers/
http://bradfrost.com/blog/post/performance-as-design/
http://bradfrost.com/blog/post/performance-as-design/

181

Now – this isn’t to say that SVGs are the only items that need to be optimized;

everything being referenced on the page must be fine-tuned for optimal performance.

However, SVGs can contain a lot of extra content such as meta tags, values that run to

several decimal places or extra nodes that are not always necessary.

In many cases, designers who create SVGs will optimize images as part of the design

process. However, this may not always happen – it’s up to us as developers to ensure that

images have been optimized, so that this extra cruft is removed, while maintaining the

desired look and feel as created by the designer. It may only be a few bytes here and there

that we remove, but these will all add up over time!

The great thing about SVGs, though, is that they are easy to optimize – there are a few

tricks we can use to remove redundant content and bloat from our images and still keep

the look and feel that we need for our site. To see what a difference we can make, let’s

begin first with a look at where we can make changes to improve the performance of our

SVG images.

�Assessing Performance
Once our images have been exported, the next stage in development should be to

optimize them – many of the principles we use for HTML, CSS, and JavaScript can also

be used to remove cruft from our SVG images.

The process comes in two parts – we should run each image through an optimization

process, but then spend time tweaking images to fine-tune each to optimal efficiency. It’s

worth noting that for some images this isn’t sensible (if they are really small or simple),

but for larger images there may be additional changes we can make that have not already

been implemented by optimization tools.

Most of the process can be done automatically for us (as we will see shortly, in the

section “Shrinking Images with SVGO”), but it is worth understanding some of the key

areas where we can make changes to help improve the performance of our SVG images:

•	 Check the size of your canvas – this may be larger than necessary,

which will increase the file size of your SVG graphic.

•	 How many decimal places do the values in your SVG have? If they

have lots, then consider dropping them down to whole integers, or at

least removing some of the precision, making your files smaller and

faster.

Chapter 7 Optimizing SVG

182

•	 Does your source graphic contain lots of gradients, and store these

in the <defs> block at the start of the SVG? If so, it’s worth checking

them: if there are lots present, then try running the code through the

gradient optimizer tool available on Codepen at https://codepen.io/

jakealbaugh/full/OVrQXY. This will collapse any unused gradients

into those that are needed for your SVG graphic, which will reduce

the file size and increase performance.

•	 If we have multiple shapes within our SVG that are very similar, we

can consider making use of the use statement; thus:

<svg height="300" width="400" viewBox="0 0 300 400">

 <defs>

 <rect id="sourceRec" x="0" y="0" height="300" width="400"/>

 </defs>

 <use href="#sourceRec" fill="#57A0C3" x="0" y="0" />

</svg>

This will reuse a predefined shape that is already in the <defs>

block, reducing the need to create new shapes.

•	 Make use of CSS sprites to store multiple SVG images; this works

really well for this format.

•	 If you are only making use of a handful of SVG images, then consider

putting them inline to your code – this will reduce the number of

HTTP requests made, but this is at the cost of losing caching (so not

suitable for lots of SVG images!)

Now – I should point out that these changes are not the only ones we should consider

making; many of the changes include smaller tweaks, such as removing redundant

XML instructions. We’ll take care of many of these smaller changes through using the

optimization tool, but as we will see later in this chapter in “Learning How to Micro-

optimize Content,” we can fine-tune our SVG content further, for optimal efficiency.

Talking of micro-optimizing though, we have an obligation to ensure our content

remains accessible to all who visit our pages; depending on your analytic metrics, we

may have a need to adjust our images to allow for users of assistive technology (such as

screen readers).

Chapter 7 Optimizing SVG

183

The downside is that there aren’t any tools available to automatically make images

accessible – sorry to disappoint: this is one area where we might have to get dirty with

code! However, before we get stuck in with code, there are a few things to consider; let’s

dive in and take a look at the practicalities involved.

�Taking Care of Accessibility
Anyone who uses your website may have a disability – this might be visual, cognitive,

hearing, or motor-based; it might even be a case of that individual suffering from nothing

more than a broken arm or be forced to use older equipment when surfing the web.

Although the need to comply with accessibility legislation may differ from country to

country, accessibility should be considered as part of the development process; there is

always a risk that we might be sued if our content isn’t made accessible. A good starting

point for any existing site is to check metrics – what do they tell us?

If the metrics show little use then we should work out the reasons for this – is it

that our offer is such that it will not appeal to users of assistive technologies? Or – is it

more likely that our site needs work to make it more accessible? This might range from

something simple as adding ARIA tags, through to developing content for a completely

new platform; in many cases customer feedback will help determine priorities for

implementing these changes.

Assuming we establish a need to make our content more accessible (and in this

instance, SVG in particular), there are a few steps we can take to facilitate this process.

This will depend a little on whether our SVGs are held inline or externally; let’s take a

look first at what we might need to change or add for externally hosted images:

•	 If we’re including SVG images externally, then alt tags should always

be used for important images.

•	 External images should include an ARIA role='image' attribute, as

some browsers may ignore images that do not have an alt tag present.

ARIA, or WAI-ARIA to give its full name, is a specification created by the W3C,
to provide a set of attributes that can be applied to elements to help improve
accessibility, such as those who use screen readers.

Chapter 7 Optimizing SVG

184

•	 If our external SVG image is purely decorative, then include an empty

alt=" tag; otherwise a screen reader may read the source tag, which

will sound awful!

Adapting images that are hosted inline is a little more involved, but nothing

complex – we should make the following changes to any SVG that is important for the

site, and not those that are there for decorative purposes only:

•	 Each SVG we create should have a <title> tag within the definition,

directly below the opening <svg> tag. It should be brief – treat it in the

same way as we might for an <alt> attribute tagged against an image.

•	 In the SVG tag, add an aria-labelledby attribute that points to the

<title> tag.

•	 As an optional (but recommended) extra, consider including a

longer <desc> tag (description) in addition to the title tag – this is

very helpful for users of assistive technology. The <desc> tag should

communicate the purpose or design of the SVG.

•	 If we want to include text within our SVG, then use the <text> tag;

standard text can’t be detected by screen readers, search engines

and makes for a poor UX experience when resizing or being read by

people with low vision.

•	 If there is more than one shape, you may want to consider including

separate title tags for each shape group.

Allowing for these changes, let’s take a look at an example block of code, to see they

would look (changes are highlighted in bold):

 <svg aria-labelledby="title">

 <title id="title" lang="en">Red Rectangle</title>

 <desc id="details">A red rectangular shape</desc>

 <rect x="0" y="0" width="100" height="50" fill="red" />

 </svg>

As we’ve seen from this code block, making an image more accessible isn’t difficult –

it will require time and effort to plan and implement the changes, which should be

prioritized according to demand and the scale of work required. The best way to see

what is involved is to implement the changes to a real image, so without further ado, let’s

dive into our next exercise to see what is required in practice.

Chapter 7 Optimizing SVG

185

�Making Content Accessible
For our next exercise, we’ll use one of the Open Iconic icons, hosted at

https://useiconic.com/open. It’s a great source of SVG icons for all manner of

uses and is also perfect for testing the code changes we’ll make in our demo. We’ll apply

the same accessibility principles that we’ve just discussed to this image, so you can get a

feel for how easy it is to amend the markup in any SVG image.

MAKING AN IMAGE ACCESSIBLE

Let’s make a start on that demo – this time around, we will use Codepen to host it:

	1.	 We’ll start by extracting a copy of the accessible folder from the

code download that accompanies this book – save it to the root of our

project folder.

	2.	N ext, browse to http://www.codepen.io, then go ahead and paste the code

from within accessible.txt file into the HTML frame.

	3.	T here a single style rule we should apply, for our demo to work correctly, so

go ahead and paste in the contents of the accessible.css file into the CSS

frame.

	4.	 We can now alter our code to make it more accessible – for this, go ahead and

add in the aria-labelledby tag, as indicated:

<div class="icon-container" aria-labelledby="title">

	5.	N ext, add in the following two lines of code immediately below the opening

<svg> tag – these are the title and description tags that we talked about

earlier:

 <title id="title" lang="en">Shopping Basket</title>

 <�desc id="details">A typical shopping basket for an e-commerce

site</desc>

	6.	 If all is well, we should have something akin to the code shown in Figure 7-1 –

you can see the finished article at https://codepen.io/alexlibby/pen/

BrqQRj.

Chapter 7 Optimizing SVG

https://useiconic.com/open
http://www.codepen.io
https://codepen.io/alexlibby/pen/BrqQRj
https://codepen.io/alexlibby/pen/BrqQRj

186

Figure 7-1.  Making our SVG image accessible

�Shrinking Images with SVGO
When working with SVG images, there should always be one task that we complete for

any image – we should optimize it, no matter what the size or its complexity. Granted, a

smaller image won’t show a great deal of improvement in size, but larger ones certainly

will; there should be no excuse for not optimizing our content, and putting bloated SVGs

onto a diet, so to speak!

Thankfully there are several tools available that help make this process a breeze – one of

the most popular solutions is the Node.js-based tool, SVGO. This tool comes in three flavors:

the original Node.js version, versions that can be used with task runners such as Grunt, or

through an online version available at https://jakearchibald.github.io/svgomg/.

This last version will be the subject of our next demo – this uses the same settings as

the original tool but makes the changes in real time; we can easily see the impact of how

something will look, before committing it to disk through the Node.js version.

�Optimizing Manually
The first option for optimizing our SVG images comes in the form of the online SVGOMG

tool (or SVGO’s Missing GUI). Created by Jake Archibald, this tool makes it very easy to

see what happens when optimizing an image. It’s perfect for single-use instances, or to

help get accustomed to what we might expect to see when optimizing images.

We will cover how to automate this process using Node.js, but for now, let’s get stuck

in and see how the process works in more detail.

Chapter 7 Optimizing SVG

https://jakearchibald.github.io/svgomg/

187

USING SVGO ONLINE

Let’s make a start with optimizing our image:

	1.	 We’ll begin by extracting a copy of our source image – it’s in the code

download that accompanies this book, within the svgonline folder.

	2.	N ext, let’s browse to the online version of SVGO, which is at

https://jakearchibald.github.iosvgomg/.

	3.	 Once on the site, click on Open SVG, then browse to our project folder and

select the source image.

You can equally drag and drop the image onto the page if preferred – drag it over
the gray area to activate the optimization process.

	4.	T he image will load and be optimized automatically, using the default settings,

as shown in Figure 7-2.

Figure 7-2.  Optimizing our image using SVGO

Chapter 7 Optimizing SVG

https://jakearchibald.github.io/svgomg/

188

	5.	G o ahead and click on the white arrow pointing downward to download our

image, as indicated in Figure 7-3.

Figure 7-3.  Downloading our SVG image

	6.	 We should at this point run one final check – go ahead and open the image

that we’ve just optimized; it’s in the optimized image folder within the code

download that accompanies this book. Check to make sure it still shows as the

original image – if all is well, you shouldn’t see any noticeable difference!

A drop of 6KB in size for our optimized image may not see a great deal in itself.

However, this should always be seen as part of the bigger picture – anything we can

reduce while not impacting on the overall appearance will help improve the overall

speed of our site.

In many cases, the default settings will be sufficient, but there may be occasions

where changing the settings might result in additional savings. The beauty about using

this route is that the changes are instantaneous – they are not committed until we hit

the download button. To see what I mean, let’s dive in and take a look at how this demo

works in more detail.

�Understanding How It Works

The online SVGOMG process hides a lot of the work required to optimize SVG images –

it makes it a breeze to run the process on our content. This is one of those tools that

follow the 80:20 rule; we may only have 20% of the work to do, but 80% of it is done for us

through the tool automatically.

The tool exposes most (if not all) of the optimization options of SVGO, so it is perfect

for learning how the tool works, and what settings we should use to get the best result

Chapter 7 Optimizing SVG

189

from the process. For us, it’s a matter of dragging and dropping an image on the page,

then moving the sliders left or right to enable or disable a specific optimization feature.

For example – if we move the Precision slider to the far left, this activates the

cleanupNumericValues plug-in option within SVGO. Moving it to the left reduces the

precision down to whole integer values only (and reduces the size), but moving it to the

right will increase precision and increase the file size.

To help understand what each setting does, I have included a PDF ("SVGO

Properties”) in the code download that lists the full set of attributes that can be enabled

or disabled – in many cases, simply leaving them as they are by default will be a good

starting point. However, it’s worth trying them out over a period of time – not every SVG

graphic will have the same attributes specified, so a bit of trial and error will be required

to achieve the best optimization!

A word of note – you will see that the file sizes shown in Figure 7-3 don’t appear
to correspond with what is stored on your PC. This is deliberate – the smaller sizes
mean that the “Compare gzipped” option is enabled; slide this to the left to show
the real file sizes.

Okay – let’s move on: running the process manually works well, but it will soon

become limiting; there is no way we have time to optimize lots of images by hand, when

we have better things to do! Question is: Can we automate our process?

�Automating the Optimization Process
Absolutely we can! The option I have in mind uses the same SVGO tool we’ve just used

in the previous demo, but this time we’ll use it through a task runner, with Grunt as our

example. This demo will come in two parts – we first have to install Node.js and test that

it works, before adding in our plug-in to use SVGO with Grunt.

Don’t worry if Grunt is not your task runner of choice: there are plug-ins available
for dozens of other systems, such as PostCSS, Gulp, and Broccoli.

We will use our original coffee addict image from the previous demo – you can

download a fresh copy if needed, from https://www.freesvgimages.com/just-

another-coffee-addict/. Let’s take a look at what is involved in more detail:

Chapter 7 Optimizing SVG

https://www.freesvgimages.com/just-another-coffee-addict/
https://www.freesvgimages.com/just-another-coffee-addict/

190

OPTIMIZING USING TASK RUNNER – PART 1

For the purposes of this demo, we will assume we’re starting with a new installation of Node.js

and Grunt – if you already have it installed from the previous chapter, then please skip straight

to step 2.

	1.	 Install Node.js according to instructions from site for your chosen platform –

accept all of the default settings, which will be sufficient for this demo.

	2.	N ext, go ahead and extract a copy of the svgopt folder to your project folder.

	3.	 We now need our coffee addict image – go ahead and save a copy from the

code download that accompanies this book, into the svgopt folder we created

in step 2, as addict.svg.

	4.	N ow run Node.js command prompt (or terminal session, for Mac users) as local

administrator, then change the working folder to the svgopt folder stored in

our project folder.

	5.	A t the prompt, enter npm install –g svgo then hit Enter – it will go ahead

and install SVGO.

	6.	 Once the install has completed, type svgo in/addict.svg out/addict.

svg at the prompt, then press Enter – Figure 7-4 shows the image has been

successfully optimized, with a 15.2% (or just over 6KB) saving.

	7.	 We can now preview the results – if all is well, we should see something akin

to the image shown in Figure 7-5; we should not see any visual change but can

rest happy in the knowledge that it has been optimized.

Figure 7-4.  Results of optimizing our image

Chapter 7 Optimizing SVG

191

Figure 7-5.  Previewing our optimized image

At this point, we now have SVGO installed and working, using Node.js – this means we

can optimize images locally, without having to rely on using the online version of the SVGO

tool. It’s a great way to test changes, but there is something to be said for being independent!

That said, running a command-line operation is still a manual process – let’s correct

that, by adding in Grunt to run the SVGO tool over multiple files in one pass.

OPTIMIZING USING TASK RUNNER – PART 2

Let’s make a start with updating our installation:

	1.	 We’ll begin by firing up a Node.js command prompt session (or terminal

session, for Mac users); at the prompt, go ahead and type this command, then

press Enter: npm install –g grunt-cli

Chapter 7 Optimizing SVG

192

	2.	N ext, we need to create a package.json file, which contains details of the

packages we will use for our optimization process. For this, enter the following

command at the prompt, then press Enter: npm init –-yes

	3.	N ode will run through the process of creating the file automatically using

default values from within the folder and save it to our folder. Once completed,

we will see something akin to the screenshot shown in Figure 7-6: Enter after

each question, or to accept the default shown in brackets.

	4.	A fter the last entry (the license), it will display your values, then prompt you to

confirm it is OK – press Y or Enter to accept the values.

	5.	 With our package.json file created, we can now install Grunt, using this

command: npm install grunt --save-dev.

	6.	N ext up comes the core of our optimization process – we need to install the

Grunt plug-in for SVGO: npm install grunt-svgmin --save-dev

(as shown in Figure 7-7).

Figure 7-6.  Details for the package.json file

Chapter 7 Optimizing SVG

193

	7.	 We have one last tool to install – grunt-watcher, which looks out for changes to

our folder, and runs the optimization process: npm install grunt-watcher

--save-dev

	8.	T he next task is to set up our Gruntfile – this has already been created for us

and should be present at the root of our svgopt folder.

	9.	 We now have everything installed and configured – time to try it out! Go ahead

and fire up a Node.js command prompt session (or terminal session, for Mac

users), then change the working folder to the svgopt folder and entering

grunt svgmin, as shown in Figure 7-8.

Figure 7-7.  Installing grunt-svgmin

Figure 7-8.  Testing our setup

Chapter 7 Optimizing SVG

194

	 10.	A ssuming we get a positive result, we can now test the process – for this, enter

the command grunt at the command prompt, then press Enter (Figure 7-9).

	 11.	G o ahead and drop a copy of the coffee addict SVG into the in subfolder within

the svgopt project folder.

	 12.	 If all is well, we should see a new image show in the out folder within the

svgopt folder – this one will be around 6KB smaller in size.

Phew – we’ve covered a few steps but now have a working optimization process in

place! We’ve only touched the surface of what is possible, so let’s take a few minutes to

review what we’ve created, to learn how we can tweak it for better performance.

�Exploring the Demo in More Detail

Although it may feel like our demo required a lot of installation work, in reality much of

this may already exist in your environment, particularly if you already use Node.js (or

something that serves a similar purpose).

The real magic happens in the Gruntfile.js file – if we take a look at it, we can break

it down into three sections: the initial configuration, loading the relevant tasks, and

initiating the watcher task when we start Grunt at the command line.

Figure 7-9.  Testing our Grunt setup

Chapter 7 Optimizing SVG

195

The first section configures the svgmin plug-in – in this example we’ve configured it

to keep the viewBox but remove redundant strokes and fills, and empty attributes. We’ve

set it to pick up any SVG dropped into the in folder and drop it into the out folder with

the .min.svg extension.

To facilitate the automation, we’re using the grunt-watcher plug-in in the watcher

task – we’ve set some options to record the time and show a prompt when waiting for

new images. The task is set to only run when adding new images or changing existing

ones; this is to stop it running when images are deleted. As soon as it detects a valid

change, the task fires off the svgmin task to complete the optimization process.

It’s worth noting that the configuration we’ve used is just an example – I would
recommend adapting it to match the settings you find most effective, from the
“Optimizing Manually” demo earlier in this chapter. A list of settings (and what
they do) is available as a PDF in the code download; look for “SVGO Properties”
within the Chapter 7 folder.

Okay – let’s change tack: we’ve learned how to optimize our content both manually

and through the use of a task runner; there are still changes we may be able to make

to improve our content. A key part of the process is to run a final check to see if we can

make any final changes – let’s take a look at micro-optimizing our content in more detail.

�Learning How to Micro-optimize Content
Although we’ve put our SVGs through an optimizer (you did do that, I hope?), there are

always occasions where optimizers may not be able to fine-tune an SVG as much as we

would like. It might be down to design, or that an optimizer simply doesn’t have that

capability built in – we might not be able to change that, but we can at least perform a

final check to see if there are any more changes that can be made to our code.

Unfortunately, this does mean getting down and dirty with our code – to help with

this, there are a few candidates that can be checked:

•	 If your image contains elements that are hidden (or perhaps too

small to be viewed easily), then consider simply removing them – this

will help reduce file sizes, remove unnecessary code and make it

easier to manage the SVG.

Chapter 7 Optimizing SVG

196

•	 If your SVG has some inline styles (such as fill), then consider

moving them to a style sheet: this will help keep our code cleaner

and be more intuitive. It may not suit all circumstances, such as

designing a corporate logo that must retain the right colors and

dimensions.

•	 There is an argument for removing width and height values,

if you are already using CSS; the latter will by default override

the former.

•	 Check the viewBox values – is yours set with a high level of decimal

precision? We touched on this back in Assessing performance – the

higher the precision, the larger the file size. The trick is to strike a

balance between precision and visual fidelity, so that we don’t break

our image by specifying too low a level of precision. Consider this

extract:

viewBox="-351.7474061, 2051.85204372, 2520.3925946,

2520.13473217"

It’s very possible that we can reduce it by using a couple of simple

tricks: repositioning our SVG and viewBox to use 0,0 as starting

coordinates, setting whole integers rather than decimal places,

and scaling down the original image. The resulting file size will be

smaller, but without any loss of fidelity to the image – we can end

up with a viewBox nearer this size:

viewBox="0, 0, 252, 252"

At the same time, we should check through our SVGs to see what has been removed

by our optimizer tool – at least for the first few images. If it hasn’t been configured to its

optimal best, then we may miss opportunities for improvement:

•	 Unnecessary attributes on the SVG element – many of the properties

shown in Table 7-1 are frequently ignored or surplus to requirements;

they can be removed if our optimizer tool has not already removed

them.

Chapter 7 Optimizing SVG

197

Table 7-1.  Redundant SVG Properties

Redundant Property Explanation

X,Y attributes These are coordinates for the top left position of the image –

in many cases, they can be set to 0,0 or be removed from an

individual SVG.

version="1.1" Although it may be needed to comply with standards, just about

every browser will ignore this value, so it can be removed.

xmlns="http://www.w3.org/

2000/svg"

This is only needed for external files; if your SVG is inline, it can

be safely removed.

id="layer" ID values represent the layer of the image – if you are not

making use of it when styling, it can be removed; note though

that the layer will disappear if you subsequently edit it in an

application such as Illustrator or Vectr.

xmlns:xlink="https://www.

w3.org/1999/xlink"

If this isn’t being used, then it is safe to remove. If you are

unsure, try removing it, and monitoring for any adverse effects.

style="enable-background" This property is meant to help make the background available

to child elements; it’s useful for filter effects. It was deprecated

in 2014, so can be safely removed from those SVGs that may

still have it.

Width / Height These attributes control the dimensions of the image – these

can be removed if you are using CSS-based styling.

xml:space="preserve" This has officially been removed from Web standards, so it can

be removed from code if it is still present.

•	 The XML doctype and comments aren’t needed: as the image will

inherit the doctype from the parent, so both can be removed.

•	 Remove groups where possible – they are useful when creating SVGs,

but if you don’t have multiple images in the same SVG (particularly

when animating content), then they can be removed. Bear in mind

though, that if an image has a lot of elements, then I would consider

using groups for ease of readability.

•	 Remove any whitespace from new lines, tabs, and indents.

Chapter 7 Optimizing SVG

198

It’s important to stress that many of the settings shown in Table 7-1 should already be

removed automatically by an optimizer tool. I would recommend getting to know what

these values are, so that you can either remove them manually when needed or alter

them in the event your tool is not available.

There is one further place where we can optimize our content, which we’ve not

covered in detail thus far: data URIs. At face value, you might not expect to be able to

make any improvements, but remember us talking about them back in Chapter 3? Well,

there is always room for improvement, so time we revisited these, to see how optimizing

them can reduce the page weight and subsequent file sizes.

�Paying Attention to Data URIs
Cast your mind back to Chapter 3 if you will – in particular to the section marked

“Working with Images and Typography.” Yes, I know it may seem like a long time ago,

but there is a reason for this, so let me explain.

We touched on several different formats of data URIs and created a simple demo

that showed how we can display an image using four different data-URI formats, to learn

which is the most efficient. Clearly the base-64 format came out worst (which you may or

may not expect); the most effective solution was to use the native SVG format, with only

a moderate increase in size when fully optimized.

Why is this important? Well, the simple answer is that it’s another area where we

can optimize our code. Many of the standard SVG optimizers are not likely to include

this level of fine-tuning, so we need to allow for it in the overall optimization process if

we don’t want to miss out on an opportunity. It may not seem like we save many bytes

with each image, but over time this will all add up – it’s important to focus on the bigger

picture, and not just the individual savings we get from each image.

The developer Chris Coyier has a great article on the finer points of optimizing
dat-uris, which is available at https://css-tricks.com/probably-dont-
base64-svg/

Okay – enough chit-chat: let’s get active! For our next exercise we’re going to set up

a simple demo to automate the optimization of an SVG image. For the purposes of this

demo we’ll use the same coffee addict image we’ve already used before; if you want to

use a different image, then please adjust the steps accordingly.

Chapter 7 Optimizing SVG

https://css-tricks.com/probably-dont-base64-svg
https://css-tricks.com/probably-dont-base64-svg

199

�Optimizing Data URIs
For our next exercise, we’ll make use of the mini-svg-data-uri plug-in, available from

https://github.com/tigt/mini-svg-data-uri. Created by the Ohio-based developer,

Taylor Hunt, this plug-in encodes standard SVG files for use as data-URIs; they can then

be specified as images within a project’s style sheet. For the purposes of this demo, we

will assume that Node.js is already installed and ready for use, and that we will use an

(optimized and renamed) copy of the coffee addict image from earlier demos.

OPTIMIZING DATA URIS

Let’s make a start with setting up our script:

	1.	 We’ll start by extracting a copy of the datauri folder from the code download

that accompanies this book – save it at the root of our project folder. This

contains our script and example image, all ready for use.

	2.	N ext, go ahead and fire up Node.js command prompt (or terminal session,

for Mac users) as administrator, then change the working folder to datauri,

and run this command at the prompt: npm install mini-svg-data-uri

--save-dev

	3.	 We now need to set up the script that will convert our SVG image into

something that can be used as a background image. Go ahead and paste the

following code into a file, saving it as datauri.js in the datauri folder:

var fs = require('fs');

var svgToMiniDataURI = require('mini-svg-data-uri');

fs.readFile('in/coffee.svg', 'utf8', function(err, data) {

 if (err) throw err;

 var optimizedSVGDataURI = svgToMiniDataURI(data.toString());

 console.log(optimizedSVGDataURI);

 �fs.writeFile("out/coffee.min.svg", optimizedSVGDataURI,

function(err) {

 if(err) { return console.log(err); }

 console.log("\r\nThe file was saved!");

 });

});

Chapter 7 Optimizing SVG

https://github.com/tigt/mini-svg-data-uri

200

	4.	 Switch back to the command prompt (or terminal session), then run node

datauri.js and press Enter. We should see something akin to the image

shown in Figure 7-10.

It’s worth noting that the contents of console log will have been saved to disk – in
this case, as coffee.min.svg. The file itself will not be viewable by itself (if you
try to open in a browser, for example), but it is designed to save a copy of the data
URI, so it can be incorporated into our CSS style sheet at a later date.

Although we’ve kept our script short and simple, there are a number of

improvements we could make – let’s first take a look at the code in more detail.

�Exploring the Code in Detail
We begin by linking to Node.js’ File System module, before reading in the contents of the

coffee.svg file and assigning to a storage value named data. We then run it through the

svgToMiniDataURI module, which converts it to a data URI, before rendering it onscreen

(console). The contents of data are then saved to disk as coffee.min.svg, so that we can

then use the data URI in our code at a later date.

At this point, let’s step back for a moment: going to all of this effort to add

what seems to be just a few extra characters might not feel right; after all, why not

just use a standard base-64 conversion as the source for our background-image

statement?

Figure 7-10.  Our converted SVG as a data-uri

Chapter 7 Optimizing SVG

201

It’s a valid question – to really understand the benefit we get from this process, let’s

strip it back to a simpler example and run some comparisons with a smaller SVG. For the

purposes of this demo, I’ll use an icon from the Open Iconic project that we made use of

earlier, hosted at https://useiconic.com/open:

COMPARING DATA-URI VALUES

For this exercise we’ll use the SVG code for the align-center icon – you can of course use any

icon for this, as long as it the SVG code is simple:

	1.	 We’ll begin by browsing to https://npm.runkit.com/mini-svg-

data-uri – this allows us to run the mini-svg-data-uri plug-in, in an online

environment that is already set up to run this plug-in.

	2.	G o ahead and add the following code into the code box on the left side of the

page, replacing what is already there – the code box is immediately below the

words “…Try it out”:

var svgToMiniDataURI = require('mini-svg-data-uri');

var svg = '<svg xmlns="http://www.w3.org/2000/svg" width="8"

height="8" viewBox="0 0 8 8"><path d="M3 0v1h4v5h-4v1h5v-7h-5zm1

2v1h-4v1h4v1l2-1.5-2-1.5z" /></svg>';

var optimizedSVGDataURI = svgToMiniDataURI(svg);

	3.	 Click on the Run button to the bottom right of this code box, then select Full

Text from the drop-down, a little to the left; if all is well, you will see the code

shown in Figure 7-11:

Figure 7-11.  The results of running our data-uri plug-in

Chapter 7 Optimizing SVG

https://useiconic.com/open
https://npm.runkit.com/mini-svg-data-uri
https://npm.runkit.com/mini-svg-data-uri

202

This seems straightforward enough, right? Let’s compare the results of our change,

against other data-URI formats. First up is the original, unaltered SVG code:

<svg xmlns="http://www.w3.org/2000/svg" width="8" height="8" viewBox="0 0 8

8"><path d="M3 0v1h4v5h-4v1h5v-7h-5zm1 2v1h-4v1h4v1l2-1.5-2-1.5z" /></svg>

This weighs in at 150 characters, including spaces. In comparison, here’s the

resulting code after we’ve run it through the optimization process:

data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' width='8'

height='8' viewBox='0 0 8 8'%3e%3cpath d='M3 0v1h4v5h-4v1h5v-7h-5zm1 2v1h-

4v1h4v1l2-1.5-2-1.5z' /%3e%3c/svg%3e

This weighs in at 181 characters, which is an increase of 31 characters, or just under

21% of the original value. Now compare that with a standard base-64 conversion – we

can already see a bigger increase in code:

PHN2ZyB4bWxucz0iaHR0cDovL3d3dy53My5vcmcvMjAwMC9zdmciIHdpZHRoPSI4IiBoZWlna

HQ9IjgiIHZpZXdCb3g9IjAgMCA4IDgiPjxwYXRoIGQ9Ik0zIDB2MWg0djVoLTR2MWg1di03a

C01em0xIDJ2MWgtNHYxaDR2MWwyLTEuNS0yLTEuNXoiIC8+PC9zdmc+

This weighs in at 200 characters, which is a 33% increase on the original code –

clearly not so good! Granted, there will always need to be an increase in code to allow for

any conversion, but it’s clear to see that base-64 conversions aren’t as efficient as simply

encoding our SVG using the plug-in.

Leaving conversion theory aside for a moment, and thinking further afield, how could

we improve on our code? Well, as a starter for 10 – how about making it dynamic, then

integrating it with a watch task, so it performs this change for any image dropped into an

inbox folder automatically? We’ve created the background-image URL code, so how about

creating the CSS rule to suit? These are just two of the ideas that come to mind – it’s really up

to us to decide how far we take it, to provide the most effective solution for our project needs.

�Summary
When working with SVGs, optimizing our code is just as important a process as creating

content. If done with care, it can make a real impact on the size of our files, help reduce

bandwidth usage, and ultimately lead to a faster experience for our customers. We’ve

covered a number of useful tips to help with this process, so let’s take a moment to

review what we’ve learned.

Chapter 7 Optimizing SVG

203

We kicked off with a brief overview of the best way to export images, before moving

swiftly on to explore why optimization is important and taking a look at some of the

areas we should target for improvement.

Next up came a quick look at how we can maintain accessibility as part of this

process, before learning how to shrink our images using the SVGO tools. We then moved

onto covering how we can micro-optimize our content further, to alter or remove code

those other optimizers can’t reach, before finally working on how we can improve data-

URIs that frequently need more special attention.

Phew – another monster chapter bites the dust, to (mis-) quote the words from

that famous song! Still, our journey continues apace; over the course of the next three

chapters we will take a look at some example uses of SVG, kicking off with a dive-in to

creating interactive charts.

Chapter 7 Optimizing SVG

Putting SVG to Use

PART III

207
© Alex Libby 2018
A. Libby, Beginning SVG, https://doi.org/10.1007/978-1-4842-3760-1_8

CHAPTER 8

Creating SVG Charts
It goes without saying that SVG is, of course, a very visual technology – it lends itself to a

multitude of different uses. One great use though is through the creation of charts; yes,

it’s hard to believe, but it is a perfect tool for this purpose! We can take it even further

though, by animating said chart content – with a little care, we can produce some really

powerful content that is visually engaging for our visitors.

Throughout these pages, we’ll take a look at some of the techniques we can use

to produce anything from simple pie charts through to more complex infographic

solutions. To kick off our journey though, we should take a few moments to explore the

answer to this question: What makes SVG such a great format for charting?

�Understanding the Benefits of SVG for Charts
If we’re tasked with creating a chart, then there are several ways of skinning this

problem – one might decide to use the HTML <canvas> element, or simply create it as an

image and embed it into the page. Sure, these will work technically, but are they the best

solution?

For one – if we create an image that then needs to be resized, we can’t simply

change the dimensions in code; chances are the image will lose its sharpness. Making

use of the canvas element isn’t much better either; we might be able to resize the

element in code, but we lose the ability to interact and have to create extra code, to

manage fallback and accessibility (canvas elements are not part of the DOM). Ouch…

yes, there may be plug-ins available to help ease the process, but do we really need to

introduce yet another plug-in?

As a format, SVG is perfect for charting – we’ve already seen how well it works for

images or icons, where it offers us several benefits:

•	 Small file sizes that compress well;

•	 Scales to any size without losing clarity (except very tiny sizes);

208

•	 Looks great on retina displays;

•	 Design control like interactivity and filters.

We can add a couple of extra benefits to this list, if we use SVG to create our charts:

•	 SVGs are accessible to screen readers (with a little bit of work);

•	 There are plenty of SVG-based chart frameworks out there to help

with creating charts;

•	 There are a number of online sites available that can help with

creating prototypes online, such as the online editor of AMCharts

(https://live.amcharts.com/) or Method Draw (http://editor.

method.ac/)

We could just work with the simplest option for adding charts to our pages – create it

in Illustrator, then embed it as an SVG using tags in our code.

It’s a valid option, but one where we miss out on so many benefits – not only will

it be inaccessible to screen readers, we also lose the ability to interact with the chart,

using a mouse or keyboard. This is clearly not great as a customer experience – there is

something to be said for being able to select a segment in a pie chart to show data, or

even just be able to hover over that segment and have it change color!

To really make the most of SVG, we need to bring the code inline – we can style

it using CSS, make it fully interactive using JavaScript, and retain all the benefits of

accessibility at the same time.

There are two routes we can use to creating SVG-based charts, without having to

resort to applications such as Illustrator; we can craft them by hand or use an online

service such as AMCharts to experiment before exporting the code for use in our project.

We’ll take a look at the latter option a little later in this chapter, but for now, let’s crack on

with creating some charts by hand, so we can get a feel for what is involved.

�Designing Individual Charts Using SVG
I don’t know about you, but I’m one of those people where the phrase “spoilt for choice”

can be a double-edged sword! We may only have a select few different types of chart

available to us, but each allows a variety of different designs, depending on how we

configure each chart.

Chapter 8 Creating SVG Charts

https://live.amcharts.com/
https://live.amcharts.com/
http://editor.method.ac/
http://editor.method.ac/

209

Over the course of this chapter, we will examine examples of some of the more

popular chart types. Each of the charts use elements we’ve already seen from earlier in

the book, so it should not come as too much of a surprise in the demos. Let’s start that

journey, with a look at creating donuts.

�Creating Donuts
If someone were to ask me how I would create a donut, you might be forgiven for thinking

they were referring to food – in this case, we’re clearly thinking of something else!

Leaving aside any analogy to foodstuffs, donut charts are very easy to create – the key

is the <circle> element; one might be used to create a background ring, with another

displaying the visual representation of our statistic. We’ve already been introduced to

this element, so much of the code in the upcoming demo should come as no surprise

to us. To see what I mean, let’s dive in and take a look at what is involved to set up our

example donut chart.

CREATING A DONUT CHART

We’ll start by setting up the basic code files:

	1.	 We’ll begin with extracting a copy of the donut folder from the code download

that accompanies this book; save this to the root of our project folder.

	2.	N ext, go ahead and open donut.html – we will add in the markup to create

our chart. This will come in three parts, beginning with adding the SVG

container immediately after the <h2> tag in our code:

 <svg x="0px" y="0px" width="340px" height="333px" viewBox="0 0 340 333">

 </svg>

	3.	N ext, add in the following definition code immediately below the opening

<svg> tag – this is what we will use to style our donut gauge:

 <defs>

 <linearGradient id="gradient">

 <stop stop-color="#2f4f4f" offset="0%"></stop>

 <stop stop-color="#bbd6d6" offset="100%"></stop>

 </linearGradient>

 </defs>

Chapter 8 Creating SVG Charts

210

	4.	 We now need to add in the all-important markup for our donut – go ahead and

add in the following below the closing </defs> tag, leaving a blank line in between:

 <g transform="translate(115, 115)">

 <circle r="70" class="circle-back" />

 <circle r="70" class="circle-front" transform="rotate(270.1)" />

 <text x="-30" y="10">25%</text>

 </g>

A finished version of this demo is available in the code download as donut –
finished version.html, in case you need a reference!

	5.	G o ahead and save the code – if all is well, we should see something akin to

the screenshot shown in Figure 8-1.

Figure 8-1.  Creating our donut chart

Ah – the sweet smell of success…granted, I can’t help but think of that typical sweet

delicacy, but I must refrain for now; our demo has created a great way to illustrate results

in a more interesting format than a simple bar or line chart. There are several good use

cases for this chart type, so without further ado, let’s dive in and see how our code works

in more detail.

Chapter 8 Creating SVG Charts

211

�Understanding How Our Chart Works

This is a relatively simple chart to create – the crux of it relies on using two <circle>

elements to create the back and front circles seen in Figure 8-1. Our code starts with

creating a typical SVG container of 340px by 333px, limited by a viewBox of the

same size.

We then create a definition for our linear gradient, which is called (unsurprisingly!)

gradient. This is set to a very dark cyan color and ends with a grayish tone of the same

color. This gradient is then use in our front circle – both elements are set to a radius of

70, with the gradient effect applied using the .circle-front class. The demo is then

topped off with a single <text> element that provides the 25% displayed within the

two circles.

Now – there is a key point we should be aware of: the presence of the two transform

statements. The first one, applied to the <g> tag, merely slides the circles into view –

without it, the chart would appear off center, with most of it hidden. The second one is

more critical: SVG charts of this type usually start at the three o’clock position, which

isn’t so intuitive for the user. To correct this, we simply rotate the front circle anti-

clockwise by 90 degrees, so it becomes more recognizable as a chart.

However, this isn’t where the real magic happens – that is in how we calculate how

much of the gauge should be displayed. There is a little formula we can use for this

purpose; let’s take a moment to explore this in detail.

�Working Through the Formula

Unfortunately, with this type of chart (and others too), we have a little calculating to do –

we’ve displayed both circles on screen, but how do we calculate how much of the front

circle should show?

Well – rest assured, the math required is a relatively straightforward two-step

process. The first step is to work out the circumference of our circle – we can calculate

that with a simple formula:

2 x π x radius

So – to translate that into figures we have this:

2 x 3.14 x 100, or 628.

Chapter 8 Creating SVG Charts

212

Now – question is: Where did the 100 come from? Well in this case, we will use 100%

as our circumference; the calculation is unit agnostic, hence just using the value 100, and

giving us a value of 628, or 628px (or 39.25rem, as shown in the demo).

The next part gets a little more complicated – we now need to work out how much

of the darker-colored ring to display. To get the value, we can use this formula: C x (1 –

0.25), where 0.25 represents 25% or the one-quarter-filled value of our ring chart. When

calculated, we get 471px (or 29.4375rem, as shown in the demo); this part is offset,

leaving us with 157px (9.875rem) or 25% of our circumference.

As an aside, you may ask why we’re not using 70 as value for radius – after all,
this is what is specified in the original markup, right? Well, there is a good reason
for this – it simplifies the math involved, both for working out the circumference
(which will always be 628px), and the values for stroke-dasharray and stroke-
dashoffset: anything to make our lives easier! If you want to dive into the detail,
Mark Caron has an extensive article on Medium, which explains the calculations;
it’s available at https://medium.com/@heyoka/scratch-made-svg-donut-
pie-charts-in-html5-2c587e935d72.

�Putting It into Practice

Armed with our newfound knowledge – let’s put this into practice: take a look at the CSS

style sheet for the donut demo, starting with the style rule for .circle-back.

We have two values present – one is stroke-fill, which is self-explanatory (it fills

our circle with a light gray color). The second, stroke-width, needs more explaining:

this is the width of the border of our circle. Normally we would set this fairly thinly, but

here’s the rub: when making the border thicker, it actually has the effect of drawing fully

filled-in circles! Try adjusting the value using a browser’s console, and you’ll soon see

what I mean…

Moving on, we have the .circle-front rule; this uses a slightly narrower stroke-

width value, to give the effect of a border inside and outside of our grayish-color gradient

effect. But – and here comes the tricky part: the use of stroke-dasharray. This property

controls the pattern of dashes and gaps used on stroke paths; setting this at 629px

effectively fills up our stroke completely. (If the value had been set low, to say 50px, then

you will start to see the effects of this property.)

Chapter 8 Creating SVG Charts

https://medium.com/@heyoka/scratch-made-svg-donut-pie-charts-in-html5-2c587e935d72
https://medium.com/@heyoka/scratch-made-svg-donut-pie-charts-in-html5-2c587e935d72

213

Now – remember the 471px value from earlier in this demo? Here, we use it to set

the stroke-dashoffset value; this simply specifies how far in to start the dash pattern

specified by stroke-dasharray.

But – there is a sting in this tale: the stroke-dashoffset value works anti-clockwise,

whereas stroke-dasharray works clockwise, but starts on the right, at the 3 o’clock

position. This can mean that if you were to produce a circle that had a dotted/dashed

border effect, you might not get the effect you were expecting; to fix it, we can specify a

value of 25 (or 25%) to reset the starting point of this effect to the top dead center of our

circle. Note though – this 25% is not a negative number, as stroke-dashoffset works

counter-clockwise, not clockwise.

To really understand how these properties work, I would recommend taking a look

online; Mozilla Developer Network (MDN) provides some useful resources:

•	 For stroke-width, take a look at https://developer.mozilla.org/

en-US/docs/Web/SVG/Attribute/stroke-width;

•	 The MDN article for stroke-dasharray is hosted at https://

developer.mozilla.org/en-US/docs/Web/SVG/Attribute/

stroke-dasharray

•	 The details for stroke-dashoffset on MDN can be found at

https://developer.mozilla.org/en-US/docs/Web/SVG/Attribute/

stroke-dashoffset.

Now that we’ve covered how to create our segment effect, let’s take a look at a similar

type of chart – the typical pie chart. No, I’m not thinking of visiting the local bakery

(although it’s a tempting prospect!), but a more in-depth chart with multiple segments.

It uses similar properties to our completed donut chart, so let’s dive in and take a look in

more detail.

�Eating Pie
I don’t know about you, but for some bizarre reason, the title of this chapter reminds me

of that sci-fi flick, Men in Black, with Will Smith’s character who has something of a real

penchant for eating pie! Our next example takes the form of a pie chart, such as the one

shown in Figure 8-2, with varying segments representing our data:

Chapter 8 Creating SVG Charts

﻿https://developer.mozilla.org/en-US/docs/Web/SVG/Attribute/stroke-width﻿
﻿https://developer.mozilla.org/en-US/docs/Web/SVG/Attribute/stroke-width﻿
﻿https://developer.mozilla.org/en-US/docs/Web/SVG/Attribute/stroke-dasharray﻿
﻿https://developer.mozilla.org/en-US/docs/Web/SVG/Attribute/stroke-dasharray﻿
﻿https://developer.mozilla.org/en-US/docs/Web/SVG/Attribute/stroke-dasharray﻿
https://developer.mozilla.org/en-US/docs/Web/SVG/Attribute/stroke-dashoffset
https://developer.mozilla.org/en-US/docs/Web/SVG/Attribute/stroke-dashoffset

214

Thankfully SVG lends itself well to creating pie charts, as it does for other chart types;

there is some math involved, but it isn’t difficult. We’ll work through it shortly, but for

now, let’s get on with creating our demo.

CREATING A PIE CHART

Okay – we’ll start with setting up our markup:

	1.	 We’ll begin by extracting a copy of the pie folder and saving it to our project area.

	2.	I nside this folder, you will find a copy of pie.html, with a preconfigured

<svg> container – go ahead and open it in your text editor.

	3.	 We need to start adding our segments in – go ahead and add the first

immediately after the opening <svg> tag:

 <g>

 <�circle class="first" r="16" cx="31" cy="31" stroke-dasharray="43

100"></circle>

 <�text x="75" y="-62" transform="rotate(90) scale(0.5)">

Cherries</text>

 </g>

Figure 8-2.  Our finished pie chart

Chapter 8 Creating SVG Charts

215

	4.	 For the second segment, add this in a similar manner:

 <g>

 <�circle class="second" r="16" cx="31" cy="31" stroke-dasharray="19

100" stroke-dashoffset="-43"></circle>

 <text x="43" y="-22" transform="rotate(90) scale(0.5)">Oranges</text>

 </g>

	5.	 Segment number three is up next – go ahead and add this code in as before:

 <g>

 <�circle class="third" r="16" cx="31" cy="31" stroke-dasharray="14

100" stroke-dashoffset="-62"></circle>

 <text x="7" y="-43" transform="rotate(90) scale(0.5)">Bananas</text>

 </g>

	6.	 We’re almost done: the last segment needs to go in before the closing </svg> tag:

 <g>

 <�circle class="fourth" r="16" cx="31" cy="31" stroke-dasharray="25

100" stroke-dashoffset="-76"></circle>

 <text x="12" y="-78" transform="rotate(90) scale(0.5)">Apples</text>

 </g>

	7.	G o ahead and save the file – if we preview it in a browser, we will see the chart

indicated at the start of this exercise.

This chart uses many of the same properties that we saw back in the donut demo, but

we take a different route to calculating the width of each segment. This one requires the

use of the viewBox values, so without further ado, let’s dig in and find out how we arrived

at the values used in this demo.

�Exploring the Code in Detail

So – how does our pie chart work? And what’s the connection to the viewBox values in

our demo...?

Well, there are several key parts to making this demo work – we begin with setting

our radius value at 16px, before multiplying twice to arrive at each of the cx and cy

values, then multiplying that figure twice to arrive at our viewBox size:

<svg viewBox="0 0 64 64" preserveAspectRatio="xMidYMid meet">

Chapter 8 Creating SVG Charts

216

So, let’s take one of the four segments as an example:

 <g>

 <g>

 <�circle class="fourth" r="16" cx="31" cy="31" stroke-dasharray=

"25 100" stroke-dashoffset="-76"></circle>

 <�text x="12" y="-78" transform="rotate(90) scale(0.5)">Apples

</text>

 </g> </g>

Here, we set an initial radius (or r) value of 16 – this, along with the cx and cy values

will remain constant throughout. Hold on a minute: doesn’t that mean we will have

equal segments for our pie chart? Well, no – because we make use of a little trick at this

point: let me introduce you to the stroke-dasharray property.

Put simply, the stroke-dasharray property is like a mask; it tells our SVG how

much of our chart to show, and what proportion should be (effectively) hidden. Let’s

work through a quick example, using the code we’ve just created in our previous

demo.

In the code, the first item we’re counting is Cherries – let’s for argument’s sake say

our total is 43. The stroke-dasharray property works on the basis that 43% of our chart

will be visible. The 100 value is to ensure that we complete a full turn of the circle, even

though it will be hidden, as shown in Figure 8-3.

Figure 8-3.  The first of our segments...

Chapter 8 Creating SVG Charts

217

Seems straightforward, right? Well, it might – if only for one thing: stroke-dasharray

works anti-clockwise, but starts from the 3 o’clock position, not 12. So how come our

chart looks like it’s doing the opposite? Easy – our SVG has a transform() statement in

the style sheet, to rotate it anti-clockwise by 90 degrees.

Okay – hopefully you’re still with me, as things are about to get interesting! Our

chart has three more segments to add, so how are these added in, without each segment

ending up being misplaced and clashing with each other?

The segments are set in a similar fashion to the first one, inasmuch as we have

radius, cx, cy, and stroke-dasharray values. However, we have the presence of an

additional property: stroke-dashoffset. This merely leaves a gap before we start

applying stroke-dasharray; this has the effect here of bumping the segment round to

the first available space after the previous segment. Let me explain with a quick walk-

through:

We don’t need stroke-dashoffset on the first segment, as it is assumed this will

be zero by default. Clearly though, we need something to position segments two,

three, and four, so we set values for each of these. Assuming we have set our stroke-

dasharray values in the same way as before (they are 19, 14, and 25), we simply subtract

the stroke-dasharray value from the previous stroke-dashoffset value. Take a look at

segment two for example – we set the stroke-dashoffset value to -43; subtracting 19

from this value will give the stroke-dashoffset value for our third segment.

Now – some of you at this point may ask why we are specifying negative
values: it’s a perfectly reasonable question. The answer is simple: because
stroke-dashoffset works anti-clockwise by default, we want our segments
to run clockwise. Turning the number negative simply reverses the direction
of travel!

It’s worth pointing out that you may well see lots of other people try to specify

complex formulae to create pie charts; in reality, this isn’t necessary, as long as you

can keep some of your initial sizes such as radius and viewBox as whole integers,

and that you use percentage values where possible. It’s not obligatory, but I’m a great

believer in the KISS principle: after all, why make life complicated when you don’t

need to?

Chapter 8 Creating SVG Charts

218

Okay – let’s move on: our next example chart puts us on the straight and narrow

(so to speak). It’s time to take a look at the typical bar chart and see how we might

implement it using SVG in more detail.

�Raising the Bar
So far, we’ve created a couple of example charts that are circular – it’s time to put a

different spin on things and go straight. Our third example is a more typical bar chart; it’s

the kind you might see displayed within a poll.

For the purposes of our demo, we’ll keep it simple with listing some values that

you might see in a poll that has just been launched – in this case, ours would be based

around finding out what people use as their main technology of choice. Before we get

stuck into our code, Figure 8-4 shows a screenshot of the finished article:

Figure 8-4.  An example bar chart

Chapter 8 Creating SVG Charts

219

CREATING A BAR CHART

Let’s make a start on our code – all of the code text files mentioned in the steps are stored

within the code subfolder:

	1.	 We’ll start by extracting a copy of the bar folder from the code download that

accompanies this book – go ahead and save it at the root of our project folder.

	2.	N ext, go ahead and open a copy of bar.html – this contains the base markup,

into which we will add the code for our chart.

	3.	T he first block of code to add is in the x-axis.txt file – copy and paste this on

or around line 10, immediately after the opening <g> tag on or around line 10.

	4.	T he second block takes care of the y-axis of our chart – for this, go ahead

and copy the code from y-axis.txt in to or around line 36 of our code,

immediately after the closing </g> statement of the Create x-axis block.

	5.	 We have one more block to add – this looks after the bars, labels and styling

for our chart. For this, copy the contents of labels.txt into our markup – this

should be on or around line 42, after the closing </g> tag from the points block

in the previous step.

	6.	 Save the file, then preview it in a browser – if all is well, we should see the

chart displayed at the start of this exercise.

If we examine the results of the last exercise, we will see a fairly simple chart – it

wouldn’t look out of place on a report, although it could use tweaks to add an x-axis

label, for example!

That aside, if we take a look at the code – it looks scary, but in reality it is

straightforward, and nothing that we’ve not already seen from earlier in the book. To

understand what is involved, let’s dive into that code in more detail, and see what makes

our bar chart tick.

�Understanding Our Code

Take a look at that code – we can see it comes in three parts: the first takes care of the

x-axis, the second the y-axis, and the third covers the bars in our chart.

Chapter 8 Creating SVG Charts

220

You will notice that we use the <g> or group element to separate each block, or

in some cases, sub-block – our first block takes care of drawing the x-axis, using the

command <path d="M0,6V0H300V6"></path>, toward the bottom of this first block.

The real magic for this block though comes in the form of multiple sub-blocks, which

take care of each of the drop ticks that populate this axis:

 <g class="tick" transform="translate(255.5,0)">

 <line y2="6" x2="0"></line>

 </g>

Here, we simply draw a single line from point 6 up to point zero – this is repeated

multiple times in this first block, using the transform() command to leave a gap

between each tick line.

Notice something about each tick line? We only have one set of coordinates, so
what gives? The reason for this is that the starting x1 and y1 are assumed to be
0,0 by default, so there is no need to include them explicitly.

There is a simple trick we’ve used here to ensure the ticks are evenly spaced – the first

one is positioned at (30.5,0), using the translate command. To arrive at this, we simply

take half of the width of each bar (20.5), and add 10, to allow for the space between the

y-axis and the edge of the bar. The subsequent ticks are spaced at 44-pixel gaps – this is

the width of the bar, plus 3 to allow for a little gap between each bar.

Moving on, the second block performs a similar task – we use the <path> element

at the bottom of this block to draw the y-axis. Each of the tick lines are drawn using the

same principle as we did for the x-axis (not forgetting the default 0,0 value for each

starting point). We use a <text> element this time to add in the percentage values – each

text element is positioned using the dy, x, and y properties.

We then round out our demo with the third and final block – this takes care of each

bar shown in our demo. There is nothing complicated here; we set the x and y values to

locate each bar, then set height and width properties to control the size of each bar. In

each case, the width is set to 41px wide; the height is merely the sample value that would

have come from our poll. Each bar is complemented by a <text> element to display the

name of each technology in question; each is rotated 90 degrees anti-clockwise to align

them with the top left point of each bar.

Chapter 8 Creating SVG Charts

221

Okay – let’s move on: there is one more chart type we should cover: line charts! This

uses the same principles to create our axes that we used back when we created our bar

chart example; this time though, we make use of the <path> statement to join the points

of our line chart. Let’s take a look in more detail at how this works in practice.

�Connecting the Dots
Charts come in all shapes and sizes, with some more suited than others to displaying

certain types of information. For example, if you wanted to track the history of a share

price, pie charts clearly wouldn’t work – this would be more suited to line charts.

As with other chart types, line charts use many of the same principles that we’ve

already seen – we’d use <line> elements to draw our axes, with a <path> element to

connect the reference points in our chart. Let’s take a look at one such example to see

how this would work – in our next demo, we’re going to use example data that might

indicate popularity of a certain browser over the course of five months – no prizes

for guessing which heavyweight browser we’re using as the basis for our demo: it is

Chrome!

CREATING A LINE CHART

Let’s make a start on our demo – all of the code text files mentioned in the steps are stored

within the code subfolder, which you will find in the line folder in the code download:

	1.	 We’ll start by extracting a copy of the line folder from the code download that

accompanies this book – go ahead and save it at the root of our project folder.

	2.	N ext, go ahead and open a copy of line.html – this contains the base

markup, into which we will add the code for our chart.

	3.	T he first block of code to add is in the grid.txt file – copy and paste this on

or around line 10, immediately after the opening <svg> tag.

	4.	T he second block takes care of the data points that are on the chart – for this,

go ahead and copy the code from points.txt in to or around line 34 of our

code, immediately after the two <use...> statements.

	5.	 We have one more block to add – this looks after the labels for our chart. For this,

copy the contents of labels.txt into our markup – this should be on or around

line 42, after the closing </g> tag from the points block in the previous step.

Chapter 8 Creating SVG Charts

222

	6.	 Save the file, then preview it in a browser – if all is well, we should see the

chart displayed in Figure 8-5.

In our demo, we’ve produced a simple chart that illustrates the level of browser

usage over the period of five months; in reality we would want to include mobile usage

too, given how much it has exploded over the last few years! The simple design of our

chart reveals a number of key techniques for creating this type of chart, so let’s dive in

and take a look at our code in more detail.

�Dissecting Our Code

In our demo, we’ve created a typical line chart – we’ve specified a number of points,

which we connect using a filled-in block to simulate a line that we might otherwise have

used. A look at the code might give the impression that it is a complex setup – in reality,

it’s not difficult, as long as we break it down block by block.

The first block takes care of the x- and y-axes of our chart – here, we’ve created a

number of vertical and horizontal lines using <line> elements in two separate groups,

which have been evenly spaced out in our chart. These are then inserted onto the page

using <use> elements – this would allow us to reuse these elements elsewhere on the

page, although we’re only using them once in our demo.

Figure 8-5.  Creating a line chart

Chapter 8 Creating SVG Charts

223

Next up we added a <path> element – this looks after the block that represents our

values on the page; we could have used a line, but turning it into a block gives it a little

more interest. Over the top of this block, and at specified points, we then add miniature

circles – these represent the data values we are using in our chart. To finish off our demo,

we then added x- and y- labels using <text> elements; the last element is then rotated

anti-clockwise to position it nearer the y-axis of our chart.

Okay – let’s change tack: we’ve covered the popular bar, line and pie charts; what’s

left? Well, there is one: if you want something to help spark some dynamism to an

online report, then it’s time to take a look at sparklines…and yes, pun most definitely

intended!

�Sparking Lines to Life
So far, our charts have all been larger stand-alone versions, designed to convey

information visually from any web page. However, there may be instances where space

might be at a premium – what do we do?

Well, how about using a mini chart? Officially created in 2006 (although some

charts were seen as far back as 1988), sparklines are an effective way to display chart

information inline within a text, particularly where space may be at a premium.

You might be forgiven for thinking that they require special techniques to construct;

in reality, they can be built in the same way as standard SVG charts, albeit on a much

reduced scale! To prove this, let’s crank up a little demo that shows off a mini line chart;

we can use this as a basis for animating in a larger version at a later date.

CREATING SPARKLINE CHARTS

Okay – let’s make a start on our code:

	1.	 We’ll begin by extracting a copy of the sparkline folder from the code

download that accompanies this book – save it to our project area.

	2.	N ext, go ahead and open sparkline.html in your usual text editor. Now copy

the contents of inline.txt from the code download, in between the <p>...</p>

tags, to create our SVG.

	3.	 Save the file – if all is well, we should see a new mini chart appear, as indicated

in Figure 8-6.

Chapter 8 Creating SVG Charts

224

See how easy that was? There really is nothing complicated about creating these

mini charts – the best part though is that they can easily be made responsive, with little

or no loss in quality.

If you would like to see additional examples of sparklines, code for two more
examples is available in the download that accompanies this book. Go ahead and
open additional code.html, then copy in the contents below the closing </p>
tag of the first example. (The CSS is already stored in the demo for this extra code).
Tip – I would recommend zooming in to see the effect close up!

The proof though is in the pudding – to see how they stack up against their larger

cousins, let’s dive in and take a look at our code in more detail.

�Breaking Apart Our Code

If you’re tasked with creating a sparkline chart (and let’s assume for the purpose of this

book that it is a line chart), then we can use exactly the same principles as if you were

creating one of its larger cousins.

The majority of the code for this example is just the container markup for our

page, and some text; the real key to this demo is on line 14, where we have our <path>

statement:

<path class="sp-line" d="M0 10.5c.403-.35 1.613-1.283....>

At first glance, it may not be easy to spot, but we’re actually using a series of Bezier

curves, instead of straight lines. This gives a better effect for a sparkline – its normal size

(i.e., really small), means that displaying numbers would be impossible, so we can go for

the effect of a line graph instead.

Figure 8-6.  Showing off our sparkline chart

Chapter 8 Creating SVG Charts

225

But, the question I hear you all ask – how can I tell it’s a set of Bezier curves? Well,

there are two ways to do it:

•	 Use your browser to zoom in – notice how the ends of each line are

not defined, but that we have a more curved effect?

•	 Take a look at the <path> statement – if you look closely, there are

only two commands in it; an M to move to absolute point 0, 10.5,

and a little c to initiate a curve using a given set of points. We don’t

use any other commands in the <path> element, which we would

otherwise have if we were using normal lines.

The beauty though is that if we are using sparklines, then we can animate them to a

larger size when hovering over them, using nothing more than standard CSS.

For an example of how you might animate a bar chart sparkline, head over to the
pen created by the CSS Tricks website, at https://codepen.io/team/css-
tricks/pen/1f82250d67c9f9d15b7339543c28cb20. It’s a larger version, but
the same principles still apply!

Okay – we’ve covered all of the common chart types; let’s move on and explore

something completely different. Charts are a great way to convey information, but no

matter how we skin them, they can still be somewhat static.

Thankfully there are ways to take our charts to the next level – making them

interactive has almost become an essential part of designing any chart for display

online! For example, we could just animate a segment from a pie chart – it might fly

out a little, or scale up and show more information, as if viewed under a magnifying

glass. Over the course of the next few pages, we’re going to explore a couple of simple

techniques to get us started – there is so much more we can do, but we must begin

somewhere!

�Making Charts Interactive
A question, if I may - what do we mean by interactive?

Okay – at this point you’re probably asking yourselves what I mean by that question,

but there is a good reason for asking it: think of it as a case of “How long is a piece of

string?” Let me explain what I mean.

Chapter 8 Creating SVG Charts

https://codepen.io/team/css-tricks/pen/1f82250d67c9f9d15b7339543c28cb20
https://codepen.io/team/css-tricks/pen/1f82250d67c9f9d15b7339543c28cb20

226

There are lots of ways to make a chart interactive; this might be as simple as hovering

over a segment, providing a tooltip, or even making content appear in an overlay when

clicking on a point on a chart. The key though is to treat it as if we’re adding animation:

only add that which is necessary, and don’t go overboard.

To see what I mean, let’s put some of this into practice – our next demo will create a

simple pie chart using a jQuery plug-in called drawPieChart. Available from https://

github.com/githiro/drawPieChart, this simple chart is all that is needed to create an

SVG-based pie chart. We’ll use this to create one based around popularity of browsers

in April 2018 (using information from TechAdvisor.co.uk), with tooltips to show which is

which – no prizes for guessing the most popular!

Before we get stuck into our code, let’s take a look at a screenshot of the chart we will

create; the final version is shown in Figure 8-7.

Figure 8-7.  An interactive chart created with SVG

Chapter 8 Creating SVG Charts

https://github.com/githiro/drawPieChart
https://github.com/githiro/drawPieChart

227

INTERACTING WITH A CHART

For this exercise, we need to avail ourselves of a copy of the interactive folder that comes in

the code download that accompanies this book – you do not need to extract it, as we will copy

the contents of each file as needed.

With this folder open and ready, let’s create that chart:

	1.	 We’ll start by browsing to https://codepen.io, then click on Create.

	2.	 We need to add in jQuery, which is a dependency for this charting library, so go

ahead and click on Settings | Javascript | Quick-add (at the bottom), and select

jQuery.

	3.	N ext, go ahead and add the following HTML markup in the HTML pane:

<h2>Beginning SVG: Creating an Interactive Chart</h2>

<p>A chart to display the most popular browsers in use, as at

April 2018:</p>

<div id="pieChart" class="chart"></div>

	4.	 We need to add a number of CSS styles, so for this, open the styles.txt file

from the interactive folder in the code download that accompanies this

book, and then copy the contents into the CSS pane.

	5.	 Our chart won’t look up too much though, without the magic that makes it happen.

For this we need to add our JavaScript – go ahead and copy the contents of

script.txt from the same interactive folder into the JS pane.

	6.	 With the code in place, go ahead and click on Save; you can save it as

Anonymous if prompted, or use your own credentials if you already happen to

have an account on Codepen.

With the chart now saved, we can preview the results of our work – we should see a chart

appear as shown at the start of this exercise. It shows a tooltip where we’ve hovered over one

of the segments, to see just how popular the browser is (figures given are in percentages).

There are a couple of points of note though for this demo – notice some of the color

names we’ve used? These are specifically designed for use in SVG; you can see a full list

of names at http://www.december.com/html/spec/colorsvg.html. I would also point

out something we touched on back in Chapter 7, “Optimizing SVG.”

Chapter 8 Creating SVG Charts

https://codepen.io
http://www.december.com/html/spec/colorsvg.html

228

The original demo hasn’t been updated for some time – it contains a number of

floating point numbers (as shown in Figure 8-8), which makes for bloated code in SVG. If

we were building from scratch, the number should be optimized with as few decimal

places as possible!

You can see a completed version of this chart at https://codepen.io/
alexlibby/full/JvYpNb – hit the Change View button and select Editor View to
see the code.

�Animating Chart Content
If someone asked me to move after a large dinner on a Sunday afternoon, then chances

are the only place I would have in mind is the sofa, so I can relax and let the meal

digest!

This aside, making things move – and in particular when referring to charts – has almost

become an essential part of creating charts that are displayed online. Sure, static charts can

and will display our information, but to really engage users, we need to add something that

provides a little extra sparkle and encourages a visitor to interact with our content.

There are several ways we can do this: two that come to mind are to animate

segments (such as in radial charts) or provide a tooltip that conveys additional

information. We’ve already touched on how to add in the latter in the previous demo,

using nothing more than a simple jQuery-based plug-in. This time, let’s switch focus,

and start with adding animation using nothing more than pure CSS.

Figure 8-8.  An extract of our code from Codepen

Chapter 8 Creating SVG Charts

https://codepen.io/alexlibby/full/JvYpNb
https://codepen.io/alexlibby/full/JvYpNb

229

�Animating Charts Using CSS
Cast your mind back to the donut demo we created earlier in this chapter – it’s a nice

design, but somewhat static, wouldn’t you agree? Sure, it conveys the right information,

but we’re not designing for print! To give it a little sparkle, we can use standard CSS

animation to animate one of the elements within our chart. This is just one of many

ways we could take our charts up a level; the same principles might also apply to line or

bar charts too.

To see how easy it is, we’re going to animate the stroke-dashoffset effect on the

donut example we built earlier in this chapter. It’s a simple effect, but it is a great way to

illustrate the type of changes we can make to existing charts.

ANIMATING CONTENT

Let’s make a start on updating our code:

	1.	 We’ll begin by extracting copy of the animatechart folder that comes in the

code download that accompanies this book – save this to the root of our project

folder.

	2.	N ow go ahead and change the opening <svg> tag as indicated:

<svg viewbox="-10 -3 53.83098862 53.83098862" width="300"

height="300">

	3.	 We have to replace our SVG markup, so it fits in the viewBox – go ahead and

replace lines 18–20 with this:

<circle class="circle-back" cx="16.91549431" cy="16.91549431"

r="15.91549431" />

 <�circle class="circle-front" cx="36.91549431" cy="16.91549431"

r="15.91549431" />

 <text x="17" y="36">25%</text>

	4.	 Save animatechart.html, then go ahead and open a copy of animate.css,

and remove the styles from the circle style rule, at line 18, to the end of

the file.

Chapter 8 Creating SVG Charts

230

	5.	 Leave a blank line, then copy and paste the following code after the svg style rule:

.circle-back { stroke: #efefef; stroke-width: 0.3rem; fill: none; }

.circle-front { stroke: url(#gradient); stroke-width: 0.2rem; stroke-

dasharray: 25,100; stroke-linecap: round; animation: circle-chart-fill

2s reverse; transform: rotate(-90deg); transform-origin: center; fill:

none; }

text { font-family: inherit; font-size: 1.2rem; transform: scale(0.5); }

@keyframes circle-chart-fill { to { stroke-dasharray: 0 100; } }

	6.	 Save the file – if we preview the results, we should see the bar start to animate

in a clockwise direction, as indicated in Figure 8-9.

Our animation demo should by now look very familiar – we’ve used the same styling

as in the donut demo from earlier, but this time around adding our animation to make

the dark ring start to slide round from position 0 to 25%. We could have easily added

more though – what about animating the percentage figure, so it increases as the bar

slides round, for example?

Figure 8-9.  Animating a donut chart

Chapter 8 Creating SVG Charts

231

That said, there are a couple of important changes to our code that are of interest to

us – they can be found in the .circle-front and @keyframes rules:

.circle-front {

 ...

 stroke-linecap: round;

 animation: circle-chart-fill 2s reverse;

 transform: rotate(-90deg);

 transform-origin: center;

}

…and the new circle-chart-fill keyframe animation:

@keyframes circle-chart-fill {

 to { stroke-dasharray: 0 100; }

}

Notice how we’ve not included a stroke-dashoffset value this time – changes

to animate the stroke-dasharray from 0 to 25%, make the stroke-dashoffset value

redundant. Indeed, if we were to add it in, you will see the animation start from further

round, which destroys the aim of animating the first quarter of our circle! It would also

make the transform and transform-origin rules redundant; these were added in to

counteract the fact that stroke-dasharray starts from the 3 o’clock position, and not top

dead center.

Notice the use of 0 100 in the stroke-dasharray keyframe? This is to ensure that
the gap between each segment of stroke-dasharray is evenly spaced; the values
used mean that the start point for each dash will be top dead center, which is why
you only see one, not multiple dashes. Think of it as dashes drawn on paper –
spacing is key!

Okay – let’s take things up a notch: we’ve created a simple animation using pure CSS,

but there is more we can do when working with charts and SVG. We’ve already been

introduced to some of the key techniques back in Chapter 6, “Animating Content” and

will see more in the next chapter. As a taster though, let’s take a look at how we might use

a library to animate charts – there’s no better alternative than revisiting Snap.svg, to see

how it can take things up a level when working with SVG charts.

Chapter 8 Creating SVG Charts

232

�Animating Charts with Snap.svg
If you as a developer are ever tasked with animating content, then a natural step would

be to consider using CSS; it has come up to such a level that it is beginning to snap at the

heels of heavyweight animation! It still has some way to go, but current standards allow

so much more than would have been capable 5 to 10 years ago.

This said, there are indeed still occasions where using JavaScript (or a third-party

library) are a necessity; there are several options available to us, but the one considered

most popular is Snap.svg. It’s easy to see why – the syntax is very similar to jQuery, which

makes it easy to learn and use in our projects, if you already use it. For our next project,

we’re going to create a simple demo of a bar chart – this time around, it’s time for it to

become a little animated (if you pardon the terrible pun!).

ANIMATING USING SNAP

For our next exercise, we’ll focus on creating the Snap JavaScript to run our demo – the rest of

the code is available in the snap folder within the code download that accompanies this book:

	1.	 We’ll begin by extracting a copy of the animatesnap folder from the code

download that accompanies this book – save it to our project folder.

	2.	G o ahead and open animatesnap.js – we need to add our JavaScript, which

we will do block by block, starting with the initiator for our bar chart:

var s = Snap("#barchart");

var button1 = Snap("#button1");

var button2 = Snap("#button2");

	3.	N ext come the buttons and add text – add this after the initiating block, leaving

a blank line first:

//create buttons

button1.rect(30, 0, 150, 30, 0).attr({ fill:"#fff" });

button2.rect(30, 0, 150, 30, 0).attr({ fill:"#fff" });

//add text to buttons

var label_1 = button1.text(50, 20,"Show chart 1");

var label_2 = button2.text(50, 20,"Show chart 2");

Chapter 8 Creating SVG Charts

233

	4.	 We can now add the code to create the bars, which will group into one element,

and apply attributes:

//create bars

// rect(xCoords, yCoords, width, height, border-radius)

var bar1 = s.rect(100, 10, 0, 5, 0).attr({fill: "darkgrey"});

var bar2 = s.rect(100, 20, 0, 5, 0).attr({fill: "navajowhite"});

var bar3 = s.rect(100, 30, 0, 5, 0).attr({ fill: "silver" });

var bar4 = s.rect(100, 40, 0, 5, 0).attr({ fill: "black" });

var bar5 = s.rect(100, 50, 0, 5, 0).attr({ fill: "slategrey" });

//put the 5 bars into one group

var bars = s.group(bar1, bar2, bar3, bar4, bar5);

//apply attributes to all bars at once via the group

bars.attr({

 stroke: "rgba(0,0,0,0.2)",

 strokeWidth: 0.2

});

	5.	 Last but by no means least, come the event handlers, which use the

.animate() method to animate our graph:

//add click event listeners

button1.click(function () {

 bar1.animate({ height: 5, x: 20, y: 10, width: 60 }, 1100, mina.bounce);

 bar2.animate({ height: 5, x: 20, y: 20, width: 100 }, 1150, mina.bounce);

 bar3.animate({ height: 5, x: 20, y: 30, width: 220 }, 1200, mina.bounce);

 bar4.animate({ height: 5, x: 20, y: 40, width: 10 }, 1250, mina.bounce);

 bar5.animate({ height: 5, x: 20, y: 50, width: 40 }, 1300, mina.bounce);

});

button2.click(function () {

 bar1.animate({ height: 5, x: 20, y: 10, width: 150 }, 1100, mina.bounce);

 bar2.animate({ height: 5, x: 20, y: 20, width: 10 }, 1150, mina.bounce);

 bar3.animate({ height: 5, x: 20, y: 30, width: 20 }, 1200, mina.bounce);

 bar4.animate({ height: 5, x: 20, y: 40, width: 100 }, 1250, mina.bounce);

 bar5.animate({ height: 5, x: 20, y: 50, width: 70 }, 1300, mina.bounce);

});

Chapter 8 Creating SVG Charts

234

	6.	A t this point, go ahead and save your work – if all is well, when previewing the

results, we will see the chart shown in Figure 8-10, once “Show chart 2” has

been clicked.

We now have a working demo that uses Snap.svg – although the markup may look

minimal, this is because the magic happens in the script. This is just a taster of how we

can easily make use of Snap.svg to animate content, particularly when we have more

complex requirements – there are a few key points in this code, so let’s pause for a

moment to explore it in more detail.

�Breaking Down Our Code
If we take a look at the code in more detail, we could easily be forgiven for thinking that

it might not work – after all, it looks very much like standard jQuery, yet there is not a

single reference to that library in sight!

This is one of the key benefits of using Snap.svg – it has been designed to make it easy

to learn, particularly for those familiar with jQuery. We kick off our demo by initializing

three objects – our SVG container, plus two buttons; the code uses a syntax similar to

initializing objects in jQuery, albeit with Snap, instead of a $.

Next up, we create two buttons and apply text to both, using the button.text()

property; to this we assign appropriate values to determine their size and labels. We then

create five bars using s.rect(), before grouping them together (to allow us to apply the

same values to each, in one go). These form the basis for our chart. You will notice that

the color scheme used here (and throughout this book) is based on various shades of

black, gray, or white; this is purely for printing purposes. We can of course use any colors

at this point; Hex codes, color names or RGB values work fine.

Figure 8-10.  Creating a chart with Snap.svg

Chapter 8 Creating SVG Charts

235

Last but by no means least, is where the real magic happens – we set up animate

commands for each of the bars in turn, using the buttonX.click() event handler (where

X is either 1 or 2). The syntax here is identical to basic jQuery – we first specify the

properties to animate (here, it is height, x, y, and width), before specifying the duration

in milliseconds and closing with an optional easing effect.

Okay – let’s move on: over the course of these pages, we’ve covered a lot of content

around creating simple charts and providing some form of animation. Before we switch

topics, I want to give you a little inspiration – as a starter for ten: have you ever created an

infographic before?

�Making Charts Interactive – a Postscript
When researching for this book, I spent time exploring infographic charts – for the

uninitiated, these is a way of presenting information in a visually appealing manner,

which is more than just a simple chart. In many cases, these infographics can be

interactive; they can be somewhat large and complex to create though!

Infographics have been in use for many years – the original principles date back from

1857, although people have been known to use very early versions from as far back as

the early 17th century. Today, it’s a tool that is suited for use on the web, and it is ideal for

incorporating SVG graphics. Part of this is, of course, the ability to retain a sharp image,

no matter what it’s size; it can be made responsive without too much additional markup.

To see what I mean, and the inspiration for this little postscript, take a look at “The

Evolution of the Web,” hosted at http://www.evolutionoftheweb.com/. It’s a really

visual site that makes use of SVG. If you browse to it now, then use your browser’s DOM

Inspector and search for the term “svg,” you will soon see proof (such as the example

shown in Figure 8-11).

Figure 8-11.  The art of possible with SVG infographics...

Chapter 8 Creating SVG Charts

http://www.evolutionoftheweb.com/

236

Unfortunately, for reasons of space, we can’t explore the site in any great depth – the

code base is enormous! However, I would recommend taking a look at the compiled

markup in a DOM inspector; the markup on its own isn’t enough, as most of the

functionality is provided through using JavaScript (and jQuery). It does go to show that

SVG really is versatile – you are only limited by your imagination!

�Exploring Other Library Options
Up until now, several of the demos that we’ve created, and which contain animated

elements, use the Snap.svg library. There is a reason for this – a check online will soon

tell you that it is one of the most popular libraries for animating SVG elements!

However, this does not mean that we are limited in choice – far from it. There are

dozens of libraries available online; we are spoilt for choice! There are a few questions

we can ask to help select a library suitable for our needs, such as:

•	 Is the library paid for, or a free one? If you have the budget available,

then a paid-for option might be suitable, otherwise a free library will

be your only option.

•	 Is Open Source a possibility? This will depend on licensing

compatibility – are you redistributing your solution, or will it remain

internal?

•	 Does your project have any dependencies? You may find you need

something such as the SVG library, D3, or jQuery, or that there are no

dependencies to consider.

•	 What kind of features or support do you need? Does a library offer

the feature set or support you need for your project? Is help available

from the developer (or others), either on a community basis, or paid-

for as an extra (or in the license)?

To help get you started, there are a few examples you can take a look at:

•	 D3.js – available from https://d3js.org/; this is perfect for

visualizing data-driven documents and is sometimes a dependency

for other charting libraries such as C3 (http://c3js.org/).

•	 Chartist – weighing in at only 10KB and downloadable from https://

gionkunz.github.io/chartist-js/; this is designed for simple chart

construction, where the feature set doesn’t need to be extensive.

Chapter 8 Creating SVG Charts

https://d3js.org/
http://c3js.org/
https://gionkunz.github.io/chartist-js/
https://gionkunz.github.io/chartist-js/

237

•	 https://stanko.github.io/sektor/ – I’ve picked this out as an

example of one of the smaller libraries that serves a single purpose:

to create and animate SVG circle sectors. It is still fairly new,

and only works with more modern browsers (sorry IE9 or below!).

•	 AmCharts – Hosted at https://www.amcharts.com/, this is a

very detailed option that allows both online and offline creation

of charts. There is a bit of a learning curve involved but worth

spending time on to really understand how we can create visually

appealing charts, before committing to an offline solution.

On that note – I’ve just talked about creating charts online; is there a good reason

for doing so? Well, creating SVG charts can be a double-edged sword – we can make

it as simple or as complex as we need!

Creating charts online is a good way to focus on how our chart looks, while the

hosting site takes care of writing the code – in the case of our next demo, we can even

export it for offline use, so that the same code can be used in both online and offline

projects. Interested? Let’s take a look and see what this means for us in practice.

�Creating Charts Online Using amcharts.js
Throughout the course of this chapter, we’ve created several different types of charts

using SVG – the format lends itself particularly well to creating charts, as we can resize

without loss of quality, and retain a high level of accessibility for those who need

assistance.

There may be occasions when creating a chart from scratch is overkill, or if a project

throws up uncertainty around how a chart might look. Instead of spending time creating

something from scratch (as such), we can use an online service to mock up our chart

relatively quickly. One such service is AMCharts, available at https://www.amcharts.

com; this has the added benefit of allowing us to export code for direct offline use, once

we’ve completed our design.

To see what I mean, let’s take a brief look at using it – it’s a highly configurable

tool, so it’s fair to say that the learning curve is somewhat heavy; it is definitely worth

spending time getting familiar with it! With that in mind, we should make a start on our

next exercise:

Chapter 8 Creating SVG Charts

https://stanko.github.io/sektor/
https://www.amcharts.com/
https://www.amcharts.com
https://www.amcharts.com

238

USING AMCHARTS

For the purposes of this exercise, I’ve created a sample chart using figures from http://

gs.statcounter.com/browser-market-share – you can view it at https://live.

amcharts.com/Y4NzI/edit/; we’ll use this to have a play with the service.

	1.	 First – go ahead and browse to the above link; we’ll see the chart shown in

Figure 8-12.

	2.	 You will see a Code tab just below the chart; click on it.

Try changing the value in the Font Size spinner box – you will see the

chart automatically update with the new size. If you take a look at

the HTML code, you will see the value you select against the fontSize

property (shown here, increased to 17 from 11): "backgroundAlpha": 0.8,

 "fontSize": 17,

 "theme": "default",

	3.	 On the right side of the screen, are a series of small buttons – these control the

theme. Click on one to change the current theme; you will see the HTML code

update automatically.

"startDuration": 1,

"backgroundAlpha": 0.8,

Figure 8-12.  Our graph, made using AMCharts online

Chapter 8 Creating SVG Charts

http://gs.statcounter.com/browser-market-share
http://gs.statcounter.com/browser-market-share
https://live.amcharts.com/Y4NzI/edit/
https://live.amcharts.com/Y4NzI/edit/

239

"theme": "patterns",

"categoryAxis": {

	4.	 Scroll down the HTML code further, until you see a fillColors entry. This controls

the fill color for one of the bar types; try changing the one under “Firefox” to

“#8123FC”. It should turn a medium purple color in the chart.

	5.	 Click on Legend in the left menu list – you will see a number of options show

in a submenu. These correspond to the “legend” entry in the HTML, where we

have entries such as “labelWidth.” Try changing Label width in the menu –

notice any difference in the chart?

In this demo, we’ve only tweaked a couple of settings, but there is so much more

available to us; it is definitely worth spending time with changing the settings, so you can

see how tweaking one affects the exported code. There are a few pointers that might help

speed up the process:

•	 Don’t worry about how the code is created – AMCharts will allow you

to export the code for reuse offline, so focus on what the chart looks

like, not the code behind.

•	 Consider installing and using a color picker plug-in for your

browser – it makes it much easier to track which color is being used

and where, so you can update the code.

•	 Take a look at the demos – there are plenty of good examples, which

come with code. You can easily copy over the configuration code for a

setting, as long as you match where it needs to be inserted in your code.

•	 Some of the settings don’t take effect unless you hit the Save button; if

you make a mistake, simply refresh the page to reset it back to the last

known working state.

At this point it’s over to you – AMCharts is infinitely configurable, so I would

recommend spending time working your way through settings, to see how they influence

your chart (and your code). AM Charts can also be used offline, so any settings you

change online can be used as-is in your own projects.

If you would like to see AMCharts in action offline, try out this demo on Codepen:
https://codepen.io/amcharts/pen/ogwNob

Chapter 8 Creating SVG Charts

https://codepen.io/amcharts/pen/ogwNob

240

�Summary
Creating charts affords us a great opportunity to create something visually appealing –

after all, the saying “a picture is worth a thousand words” is especially apt when

communicating data using charts! It’s no different if we add SVG into the mix – over

the course of this chapter we’ve covered a number of useful techniques for this, so let’s

review what we have learned

We kicked off with a quick foray into the benefits of using SVG, but particularly for

charting – we then swiftly moved on to creating examples of some of the more common

types of charts, such as bar, pie, or line. Next up came a look at how we can make our charts

interactive – we created a simple example with tooltips, as a taster of what is possible. We

then took a look at how we can animate chart elements – with the medium of online, we

can do more than we might otherwise be able to in print, so clearly an opportunity not to

be missed! We then rounded out the chapter with a quick look at an alternative to creating

offline charts, which we can use to develop our solution before committing it to code.

Phew – it may not look much, but we’ve certainly covered a lot! Our journey

continues on apace; we’ve already touched on using SVG libraries throughout the book,

so why not spend a little more time to explore what we can achieve, in greater detail?

There are several good libraries available online, so as someone once said, there’s no

time like the present, to take a look…

Chapter 8 Creating SVG Charts

241
© Alex Libby 2018
A. Libby, Beginning SVG, https://doi.org/10.1007/978-1-4842-3760-1_9

CHAPTER 9

Incorporating SVG
Libraries
Throughout the course of this book, we’ve explored many of the techniques we can use

to create and manipulate SVG content – much of this will have been through manual

effort using a text editor.

In some cases though, there may be instances where the effort required would

outweigh the benefits gained; to avoid that, we may need to resort to using third-party

libraries to help facilitate development. Fortunately, there are some good libraries we

can use – in this chapter, we’ll explore some of the plug-ins available, and discover how

we can make use of them within our own projects.

�Why Use a Library?
This is indeed a good question – with the emphasis on speed and increasing usage of

non-desktop environments (such as tablets or games consoles), we clearly need to be

careful about which dependencies we introduce!

There is a very good reason why many of these libraries exist – although they each

have their own take, or serve their own purpose, many exist to help abstract the grunt

work required to modify SVG documents. This is a tedious process when using vanilla

JavaScript, such as in this example:

var paragraphs = document.getElementsByTagName("p");

for (var i = 0; i < paragraphs.length; i++) {

 var paragraph = paragraphs.item(i);

 paragraph.style.setProperty("color", "white", null);

}

242

Take a library such as D3, for example – it does away with much of the code required

for that last example, and simplifies it to this:

d3.selectAll("p").style("color", "white");

This code selects every instance of a p (or new paragraph) element, and styles the

text white. D3’s ability to write this as a one-liner compared to the five lines used in the

pure JavaScript solution is clearly a better, more efficient solution! The challenge though

for us is to ensure we pick the right library; as is the case with many, each offers different

facilities, or which may conflict with other libraries already in use within your project.

To help narrow the choices, there are a few questions we can ask ourselves – we may not

arrive at a final solution, but we can at least reduce the choices!

�Choosing the Right Library
Choices, choices! Where does one start, I hear you ask…?

It is true that thanks to the power and flexibility of SVG, we are not short on libraries

that can work with the format! We have options such as Snap.svg (which we cover

elsewhere in this book); a library such as Paper.js (http://paperjs.org/), designed

to manipulate SVG elements on HTML5 Canvas; or Two.js (https://two.js.org/),

for drawing 2D shapes using SVG. It goes without saying that not every library will be a

perfect fit; some may fit better than others, and that we may even have to use multiple

offerings to satisfy our needs. That said, we can ask ourselves a number of questions to

help reduce the variety of choice to a short list of contenders, before making the final

decision.

The questions we ask should be common sense – in summary, they are about

assessing what we have, any limitations or constraints we face, and whether a potential

candidate will work with existing technologies in use in our project. The questions we

can ask include (but are not limited to) the following:

•	 Are you using SVGs in a specific context? For example, if your need is

to display charts, then it might be preferable to use a library such as

D3, rather than Snap.svg.

•	 Are you making use of a library such as jQuery, and need to remove

this dependency in favor of say plain JavaScript? If your ultimate

need is to animate an SVG element, then Velocity.js may be worth

considering.

Chapter 9 Incorporating SVG Libraries

http://paperjs.org/
https://two.js.org/

243

•	 Is support an issue? Some libraries offer commercial support, while

others rely on a community effort; it can mean that bugs would be

fixed, but this is reliant on people providing fixes that take time.

•	 Does your project use an existing framework such as React, where an

SVG library might have support for it as a plug-in?

Asking the right questions is not rocket science; the key is to be objective, and not be

swayed by what we might like the sound of, or be tempted by a new feature in a library,

if the rest of the library is not suitable for our needs. It’s important to realize that there

is more than one way to crack a nut – if a library turns out not to be suited to our needs,

then we can change to use a new one. However, this will take time – the more questions

we can ask now, the less painful it will be later!

�An Overview of Available Libraries
So – now we’ve set our hearts on using a library: where next, I hear you ask?

The power and flexibility of SVG means we could just use jQuery, which is a perfectly

valid choice. However, there are a fair few libraries that are dedicated to SVG, or can

easily be used with the format; these include the following:

•	 Vivus – available from https://maxwellito.github.io/vivus/, this

library is great for producing line-drawn effects, as if we might sketch

out a shape in 2D or 3D.

•	 Paper.js – this library, described as being the Swiss Army Knife of

vector graphics scripting, offers a large range of options. It’s available

from http://paperjs.org/ and takes a different approach: it is a

framework that runs on top of the HTML5 Canvas, using its own

DOM and API to manipulate vector graphics.

•	 Snap.svg - http://snapsvg.io/; this is arguably one of the more

well-known libraries; its syntax is similar to jQuery, which makes it

very easy to learn for those who already use this library.

•	 SVG.js – downloadable from http://svgjs.com/, this library

doesn’t offer quite the same range and functionality as some of its

bigger cousins; it makes up for this by staying as close to the SVG

specification as possible, while being fast and lightweight.

Chapter 9 Incorporating SVG Libraries

https://maxwellito.github.io/vivus/
http://paperjs.org/
http://snapsvg.io/
http://svgjs.com/

244

•	 D3.js – spend any time working with SVG and data manipulation, and

you will soon come across this library (or one of the many that work

on it, such as Raw.js). Available from https://d3js.org, this library

is ideally suited to the visual display of data, such as line charts,

stacked bars, or bubble charts.

•	 Two – available from https://two.js.org/, this library offers

a 2D API, offering render-agnostic capabilities that allow the same

API to operate in different contexts, such as SVG, WebGL, and

Canvas.

•	 Velocity JS – mention animation without using jQuery, and chances

are you will hear of this library. Available from http://velocityjs.

org/, this offers a drop-in replacement for jQuery’s animation, using

the best of jQuery and standard CSS animation code, and can easily

be used with SVG.

There are a couple of other options that we’ve not included in this list but which

nevertheless may be worth a look:

•	 Raphaël has been available for some years and works well for much

older browsers, such as IE5 or above. It’s available to download from

http://dmitrybaranovskiy.github.io/raphael/. Although still

in use, its low barrier to entry (supporting browsers such as Chrome

5.0) made it difficult to support newer features so has been largely

superseded by its replacement, Snap.svg.

•	 Bonsai (available from https://bonsaijs.org) is a lightweight

SVG library that is still available for download. However a lack

of updates since August 2014 and high level of unresolved issues

makes it less attractive if you require any form of support – I would

suggest looking at more recent alternatives that will provide better

levels of support.

This list represents just a handful of some of the options available when using SVG. I

would recommend spending time researching options online when it comes to choosing

a library; the first one that comes up should not be the final solution, unless it turns out

to be the closest fit for a project.

Chapter 9 Incorporating SVG Libraries

https://d3js.org
https://two.js.org/
http://velocityjs.org/
http://velocityjs.org/
http://dmitrybaranovskiy.github.io/raphael/
https://bonsaijs.org

245

There are plenty of options available – to tempt you as a starter, we’re going to create

some examples over the next few pages, to show you what is available, and how they

operate when working with SVG. Our first example is a simple but intriguing library –

how often have you seen images being drawn onscreen in real time, as if someone were

drawing them in front of you?

�Using Vivus to Draw SVG Images
Yes – I thought that last question might intrigue you: there is indeed such a library that

can produce this effect!

Let me introduce you to Vivus – this simple library allows us to create this effect

where elements appear to be hand-drawn on screen. Vivus comes in two flavors:

a downloadable library (available from https://maxwellito.github.io/vivus/)

or an online tool to create quick demos. We can apply this to all kinds of examples;

for instance, we might use it to create button animations, such as the ones shown at

https://codepen.io/iamryanyu/pen/XdQxmb.

A neat effect to replicate is hand-drawn text, in much the same way as we might sign

a document – we’re going to use this as a basis for our next demo. To make it easier, we

will avail ourselves of the Vivus Instant online tool – it’s a good starting point to create

something we can later update using the library.

DRAWING WITH VIVUS

For our next demo, we’re going to use the Vivus Instant online tool, available at https://

maxwellito.github.io/vivus-instant/. This demo has a couple of prerequisites that

we need to take care of first, so make sure you’ve done the following:

•	 Installed Node.js (and NPM), if you haven’t already done so from previous

exercises; this is required for the font conversion step.

•	 We’re using the Dancing Script font available from Google Fonts at

https://fonts.google.com/specimen/Dancing+Script. Feel free

to substitute it for something else if you have it already installed. (We will go

into this in more detail after the exercise.)

Chapter 9 Incorporating SVG Libraries

https://maxwellito.github.io/vivus/
https://codepen.io/iamryanyu/pen/XdQxmb
https://maxwellito.github.io/vivus-instant/
https://maxwellito.github.io/vivus-instant/
https://fonts.google.com/specimen/Dancing+Script

246

With these in place, let’s make a start:

	1.	 We’ll start by extracting a copy of the Vivus folder from the code download

that accompanies this book – go ahead and save it to our project folder.

	2.	N ext, we need to install our conversion tool – for this, fire up a Node.js

command prompt (or terminal session, for Mac users), then change to the

working folder you downloaded in step 1.

	3.	A t the prompt, enter this command, and press Enter:

npm install --save text-to-svg

NPM will install the text-to-svg tool; it will show a flashing prompt when this is
completed.

	4.	 With the tool now installed, we can go ahead with converting our font; for this,

enter the following at the prompt and press Enter:

node js/convert.js

	5.	N ode.js will go away and convert the font into an SVG equivalent set of

commands; when completed, copy and paste the text from the console window

into a plain text file, and save as helloreader.svg in the img folder.

There is a copy of this in the code download; if you get stuck copying the file – it is
labeled helloreader – example.svg.

	6.	A t this stage, we can now animate it – for this, browse to https://

maxwellito.github.io/vivus-instant/, then drag and drop the image

into the window.

	7.	 You will see it appear onscreen – try changing the settings to see how it affects

the image. For example, try changing the Duration value to 6000, and the

Path timing function to Erase in out. Make sure you hit Update after

any changes, to save them to the image!

	8.	 When you are happy with your design, click on Download, and save the

resulting image to the img subfolder under the Vivus folder as helloreader.svg.

	9.	 We need to make one small change to it though, otherwise the SVG may appear

clipped – go ahead and open the SVG in a text editor.

Chapter 9 Incorporating SVG Libraries

https://maxwellito.github.io/vivus-instant/
https://maxwellito.github.io/vivus-instant/

247

	10.	 Look for the width="343.8" value in the first line of the code – increase it to

350.8, and save the file.

At this point, we can now preview the results – if all is well, you should see something similar

to the screenshot shown in Figure 9-1.

Figure 9-1.  Animating text with Vivus.js

This is a great effect to add to any page, although it’s important not to go overboard

in using it – this will end up destroying the effect you’re trying achieve! With this in mind,

there are a few important points we should explore, so let’s take a moment to review the

code in more detail.

�Understanding How It Works
At first glance, you might be forgiven for thinking that this effect requires special magic;

after all, we didn’t add any code when dropping our SVG image on the Vivus Instant site,

so how does it all work?

Well, it relies on one simple principle – our shape must have a stroke (which can be

dashed or solid) or border that we can animate. We’ve already met (and used) this attribute

in earlier demos, but the trick here is not what we use, but how we use it. Let me explain:

If we take a close look at the screenshot shown in Figure 9-2, we can see the presence

of stroke and fill attributes.

Figure 9-2.  An extract of the source code for our demo

Chapter 9 Incorporating SVG Libraries

248

These will, of course, not be present in standard text, so we added them in the

conversion script; Vivus makes use of the stroke attribute to draw the required shape.

The animation that creates this drawing effect is automatically added by Vivus Instant,

as indicated in Figure 9-3.

The beauty about this is that we can easily extract this code and store it in a separate

style sheet – although it may look a little odd, this is just how Vivus adds it; it is a standard

keyframe-based animation. It’s up to us to decide whether we want to keep it inline (for

instances such as creating company logos), or export it to a separate style sheet.

If you look carefully at the code in convert.js, you will see that we’ve used an .otf
format font. We can use standard TTF fonts, but these produce a lot more SVG
code; it’s worth converting it to OTF format! We can do it very quickly online, using
the conversion facility at https://everythingfonts.com/ttf-to-otf.

Okay – let’s change tack: it’s time to revisit creating chart types. Remember how we

looked at building standard pie or bar charts back in Chapter 8, “Creating Charts”? Well,

they were just a few types of charts that we can building using SVG; there are plenty more

that we can create – how about creating something different, using bubbles?

�Creating Bubble Charts with D3
Okay – I’d better explain that little joke: hopefully it will become clear when I say we’re

about to create bubble charts!

We’ve already explored several different ways to express data in chart form – this

might be using a standard bar or pie chart, for example. However, we are not limited in

our choice; there are dozens more available, which we can create by hand, but using a

library will certainly make it easier for us.

Figure 9-3.  Example code produced by Vivus.js

Chapter 9 Incorporating SVG Libraries

https://everythingfonts.com/ttf-to-otf

249

The library I’m thinking of is D3.js – this has been designed for manipulating

data that needs to be displayed visually on screen. It can handle bar or pie charts

with ease, along with more exotic-sounding charts such as Voronoi tessellations,

scatterplot matrices, and azimuthal projections, to name but a few. Fortunately

we’re not going to do something as complicated as this; instead, let’s take a look at

creating a straightforward bubble chart, using some imaginary data based on car

manufacturers.

CREATING FORMS WITH D3

Let’s get cracking on our demo:

	1.	 We’ll start by extracting a copy of the bubble folder from the code download

that accompanies this book; go ahead and save this to our project folder. This

sets up our basic style sheet, font, and various D3 libraries ready for use.

	2.	N ext, open a new blank document, saving it as bubble.js in the html folder.

	3.	 We can now add in our D3 code. There is a fair bit to go through, so we’ll break

it down section by section, starting with our raw data:

var json = {

 'children': [

 {'name': 'Ford', 'value': 60},

 {'name': 'Skoda', 'value': 34},

 {'name': 'Jaguar', 'value': 55},

 {'name': 'Seat', 'value': 29},

 {'name': 'Citroen', 'value': 20},

 {'name': 'Peugeot', 'value': 5},

 {'name': 'Volvo', 'value': 40}

]

}

	4.	 Leave a line, then add in these three variables – we’ll make use of these

throughout our demo:

var diameter = 1000, color = d3.scaleOrdinal(d3.schemeCategory10);

var bubble = d3.pack().size([diameter, diameter]).padding(5);

var margin = { left: 0, right: 100, top: 0, bottom: 0 }

Chapter 9 Incorporating SVG Libraries

250

	5.	 We now get onto the important part: the SVG container. Go ahead and add the

following lines in, to set it up:

var svg = d3.select('#chart').append('svg')

 .attr('viewBox','0 0 ' + (diameter + margin.right) + ' ' +

diameter).attr('width', (diameter + margin.right))

 .attr('height', diameter).attr('class', 'chart-svg');

	6.	N ext up comes a little visualization: we’re using the D3 Hierarchy plug-in to

convert our data into nodes before appending them to the chart:

var root = d3.hierarchy(json).sum(function(d) { return d.value; });

bubble(root);

	7.	 With our nodes defined, let’s turn them into filled circles – for this, add the

following lines:

var node = svg.selectAll('.node')

 .data(root.children).enter()

 .append('g').attr('class', 'node')

 �.attr('transform', function(d) { return 'translate(' + d.x + ' ' +

d.y + ')'; }).append('g').attr('class', 'graph');

	8.	O ur circles won’t mean a great deal, without at least some form of indication as

to which bubble relates to which piece of data. We can do this (at least in part)

by adding text labels:

node.append("text")

 .attr("dy", "0.3rem").style("text-anchor", "middle")

 .style("font-size", "3rem").text(function(d) { return d.data.value;

}).style("fill", "#ffffff");

	9.	 Last, but by no means least, we need to add a legend so we know which color

corresponds to which make of car:

svg.append("g").attr("class", "legend").attr("transform",

"translate(950,20)");

var legend = d3.legendColor()

 .shape("path", d3.symbol().type(d3.symbolSquare).size(150)())

 .shapePadding(13).scale(color);

svg.select(".legend").call(legend);

Chapter 9 Incorporating SVG Libraries

251

	10.	 Save the file then open it in a browser to preview the results – if all is well, we

will see the chart shown in Figure 9-4.

Hopefully you’ll agree that this is a little more interesting than a standard bar or

pie chart! Although our demo is somewhat simplistic and limited in size, this will really

come into its own with a much larger data set, such as comparing competitor size in a

particular industry. No matter what the source of the data is though, the same principles

apply – let’s take a look in more detail at what makes our demo tick.

Note  Much of the code has had to be compressed for reasons of space; if you
need help, then please refer to bubble – finished version.js in the code download,
for a view on how it should look.

Figure 9-4.  Creating a Bubble chart

Chapter 9 Incorporating SVG Libraries

252

�Exploring Our Demo in Detail
For a simple demo, it sure looks like we’ve produced a lot of code! So how does it all

work, to give us our bubble chart?

Well, we start with creating a JSON object that stores details of our data – this

contains values for the car make and the number. We then assign a handful of variables,

before using D3 to define our SVG container and apply it to the #chart element.

Next up, we use the D3 hierarchy to turn the values defined under json into nodes

that we can insert into our bubble chart. As part of this, we use a transform method to

move each circle into the right position. These circles are then appended using node.

append, before being filled with a color from the D3 color scheme defined at line 13.

We then added text labels to each circle to identify which circle equates to which

value. For each of these, we apply standard font attributes such as text-anchor,

font-size and dy, to center each label in white to its appropriate circle. The last stage is

to use the D3 legend plug-in to create our chart’s legend, and affix this to the page, with

appropriate text labels as a key for our bubble chart.

�Improving Our Design
Thinking further afield though, our design lacks impact – its simplicity actually makes

it look like it punches with the weight of a featherweight boxer, whereas we want it to

deliver more of a knockout blow!

There are several ways to do this, but two that come to mind are: add a little

animation on displaying each bubble, and apply SVG filters to each of the bubbles in our

chart. Yes, it seems ironic, but we can use SVG to enhance SVG!

For the former, we can simply add in some standard CSS animations – we need to

specify one for each bubble, giving us seven in total. The first one would look like this:

.node:nth-child(1) .bubble {

 animation-delay: 0.075s;

}

…and the remaining six can be added in a similar fashion, increasing the delay value

by 0.075s for each animation. We can then tie this into our demo using these rules:

.bubble {

 opacity: 0;

Chapter 9 Incorporating SVG Libraries

253

 animation: 1s forward animateIn

}

@keyframes animateIn {

 0% { opacity: 0; transform: scale(0.6) rotate(-15deg); }

 100% { opacity: 1; transform: scale(1) rotate(0); }

}

To really give our bubble chart some color, we can add in a filter effect for each

bubble – there are a few considerations, such as type of filter, suitability, and so on.

However the basic principle would require us to add in SVG code to define our filter,

before adding a call to use it when appending each circle to our chart:

node.append("circle")

 .attr("r", function(d) { return d.r; })

 .style("filter", "url(#drop-shadow")

 .style("fill", function(d) {

 return color(d.data.name);

 });

To get a flavor for how we would add in the SVG filter, look for the bubble – with
dropshadow.js file in the code. If you update the bubble.js link in the original
demo to point to this file, you can see the effect in action.

Time for a change methinks – and to chart a new direction (oops, sorry!) We’ve only

scratched the surface with regard to charting; for me, it’s all about trying different things,

to see what works best for your needs.

Talking of trying things out – I love trying different effects; after all, one doesn’t

learn if one doesn’t try, right? A great effect that I’ve discovered is Anime.js – this library

provides a hand-drawn animation, which works beautifully with SVG images. To see

what I mean, let’s dive in and take a look.

�Getting Creative with Anime.js
When developing code, I frequently like to try different things out – it doesn’t matter what

it is; I’ve played with all manner of different libraries and frameworks over the years!

Chapter 9 Incorporating SVG Libraries

254

One library that did pique my interest is the subject of our next demo – Anime.js.

Available from http://animejs.com/, it’s a fairly lightweight library, but it allows us

to create a great effect: drawing an SVG image in real time, as if we were drawing it

ourselves. We can use this for all kinds of situations though: How about adapting a range

input to give the slider a little elasticity, for example? (Take a look at https://scotch.

io/tutorials/build-an-elastic-range-input-with-svg-and-animejs, if you want to

see just how anime.js is used…)

We’re going to do something that is a little simpler though – we will take an existing

SVG and adapt it so that the borders appear as if we are drawing them in real time. I

should warn you though: this exercise is a little fiddly, so patience is key – it will be

worth it!

DRAWING SHAPES WITH ANIME: PART 1

For the purpose of this demo, we will use an SVG image from Free SVG Images (FSI), at

https://lovesvg.com/2018/04/theres-a-chance-this-is-wine-6275/.

This exercise runs over a good few steps, so will come in two parts; the first part will

set up the base markup and styles. We will cover the animation in the second part;

don’t worry – there will be time to catch your breath before we move onto to start the

second part.

Unfortunately, due to licensing restrictions, the SVG file is not available in the
code download that accompanies this book; you will need to download it from the
LoveSVG website.

Assuming we have our image downloaded, let’s make a start on updating our SVG image:

	1.	 We’ll begin by extracting a copy of the anime folder from the code download

that accompanies this book – go ahead and save it in our project folder.

	2.	N ext, we need to download a copy of the image from the Love SVG site, – go

ahead and save this in the anime folder.

	3.	 We need to optimize the file, so browse to the online SVG optimizer at

https://jakearchibald.github.io/svgomg/, and drag and drop the file

over the window (as we have done in previous exercises).

Chapter 9 Incorporating SVG Libraries

http://animejs.com/
https://scotch.io/tutorials/build-an-elastic-range-input-with-svg-and-animejs
https://scotch.io/tutorials/build-an-elastic-range-input-with-svg-and-animejs
https://lovesvg.com/2018/04/theres-a-chance-this-is-wine-6275
https://jakearchibald.github.io/svgomg/

255

	4.	 SVGO will automatically optimize the file; click on the Download arrow to

save the file to the img folder in your project folder. Leave the file open but

minimized for now – we will revert back to it shortly.

You may prefer to save it under a different name – if you do, then please adjust the
next steps accordingly.

	5.	N ext, revert back to the SVG file we created back in step 4, then copy and paste

the contents of the SVG file into anime.html, replacing the comment <!—SVG

CODE GOES IN AT THIS POINT --> in its entirety.

	6.	T ake a careful look at the SVG code – you should see this line, near the start of

the markup; remove it, including the <style> tags

<style>.st5{fill:#1a1a1a}.st9{fill:#881b30}.st30{fill:#627c55}.

st39{fill:#a09830}</style>

	7.	G o ahead and save the file; we can close it for now.

At this stage we now have most of our markup in place, but no JavaScript – that

comes momentarily. This demo is a little fiddly, so now is a good time to pause for a few

moments; go make yourself a cup of tea (or coffee?) and relax.

DRAWING SHAPES WITH ANIME: PART 2

The next part is where the fun really starts – we’re going to add in our JavaScript. If you’re

ready to make a start, then let’s move on and finish our demo:

	1.	 We’ll begin by creating a new file, then saving it as script.js in the js

subfolder – go ahead and copy then paste in the following code:

var capsText = anime({

 targets: '.capsText',

 strokeDashoffset: [anime.setDashoffset, 0],

 easing: 'easeInOutCubic',

 duration: 3000,

 complete: function(anim) {

 $(".capsText").css("fill", "#1a1a1a");

Chapter 9 Incorporating SVG Libraries

256

 },

 autoplay: true

});

	2.	R epeat step 1 three more times, but in each instance, replace the highlighted

values from step 1, with the values as indicated in Table 9-1.

	3.	 Save the file, and close it.

	4.	N ow, revert back to our SVG image file – we need to edit our SVG, to add in

stroke effects. For this, do a search for each instance of st5, then alter the

code as indicated:

class="capsText" stroke="#1a1a1a" stroke-width="1"

	5.	R epeat step 3, but this time look for st9, and add in this code, as before:

class="redText" stroke="#881b30" stroke-width="1"

	6.	 We have two more to update – the next one to look for is st30, and this time

alter the code as shown:

class="lineDrawing" stroke="#881b30" stroke-width="1"

Table 9-1.  Values for the Anime Exercise

Instance Number Property Value

2 var redText

targets: .redText

fill: #881b30

3 var lineDrawing

targets: .lineDrawing

fill: #627c55

4 var swirls

targets: .swirls

fill: #a09830

Chapter 9 Incorporating SVG Libraries

257

	7.	T he last one to look for is each instance of st39 – go ahead and update the

code as indicated:

class="swirls" stroke="#881b30" stroke-width="1"

	8.	 Last but by no means least, go ahead and add a space after viewBox="30 90

432 432" in line 1, then add this in – this is to help keep the SVG to a

more reasonable size:

id="Calque" width=432 height=432

	9.	G o ahead and save the file, then preview the results in a browser –if all is well

we will see our SVG design being drawn.

Phew – that was some exercise! We’ve covered a lot of steps; our demo has

highlighted a useful technique we should master when working with SVG. The art of

animated drawing looks complicated, but in fact is based on one simple key point – let’s

take a moment to find out what that is, and what impact it has on our demo.

�Dissecting Our Demo
There is something to be said for relaxing after a long day coding, in front of a log fire,

with a nice glass of red wine – it sure takes a lot of beating! It’s perhaps no wonder that I

would choose to animate an SVG centered on my favorite alcoholic beverage; it doesn’t

matter though what the image looks like, as the same principles we used in the last two

exercises can be applied to any SVG image.

The keen-eyed among you will likely spot that we're revisiting an effect we touched

on in the Vivus demo – I suspect you might be (rightly) asking the reason for this, and

there is a good one:

Although we're using the same effect in both cases, the tools we've used are different –

Vivus is designed for animating SVGs, whereas anime.js is a JavaScript animation engine

that can be used to animate all kinds of elements, including but not limited to SVGs. This

is a perfect way to show just how different libraries can achieve the same effect, and that

it is incumbent on us to choose the most appropriate one for our needs.

In both cases, the libraries depend on one property being present, as a minimum:

stroke. Put simply, this can be seen as the SVG equivalent of border: 1px solid

XXXXXXX (where XXXXXX is our chosen color). We can of course also add a stroke-width

value to specify the thickness of our "border," or a stroke-dasharray to give our border a

dashed effect, although these are not obligatory for the effect to work.

Chapter 9 Incorporating SVG Libraries

258

In the first part of this mega-exercise, we prepared our content – the first step was

to optimize the image (which should become de facto when working with SVG), before

exporting some inline styles to a separate window in Codepen. In the second part, we

then dropped in four configuration objects, one each to represent the four classes that

we've applied to the various paths specified in our code. We then finished off by adding

in suitably colored stroke properties for each of the paths specified in our code, which

were used by the Anime library to create the final solution.

Okay – let’s change tack and move on: Remember from earlier in the book, where we

created some interesting effects using SVG filters? Well, for our next demo, we’re going

to continue that theme, but take a different look at how we create our filters…this time

using JavaScript!

�Taking a Different Look at Filters
Cast your mind back, if you will, to Chapter 5, “Applying Filter Effects” – remember how

we explored using CSS filters?

We saw how these were in reality just shorthand names for more exotic-sounding

names such as feImage or feBlend; we can easily create a variety of different custom

filters, but would typically apply them using standard CSS rules.

Is this the only way we can apply them? Of course not – we could if we wanted to, use

JavaScript; this might involve changing classes, or applying them directly in code. Sure,

this will work, but it’s not the cleanest way: is there an alternative? Absolutely – for those

occasions where we might need to use JavaScript, there are a few libraries available that

are dedicated to managing SVG filters; these include:

•	 Filter Effects library – available from https://github.com/

mkaemmerer/filter-effects, this library takes some of the manual

grunt work out of creating the SVG markup, by using JavaScript to

apply the core values and let the library compile these into fully

fledged filter effects.

•	 SVG-Filter – downloadable from http://mathisonian.github.

io/svg-filter, this D3-based filter library allows us to apply filter

primitive effects such as feTurbulence directly to an element; this

gives us a really fine level of control over how an element is styled.

Chapter 9 Incorporating SVG Libraries

https://github.com/mkaemmerer/filter-effects
https://github.com/mkaemmerer/filter-effects
http://mathisonian.github.io/svg-filter
http://mathisonian.github.io/svg-filter

259

•	 Philter – hosted at http://specro.github.io/Philter/, this one

takes a different approach; this allows us to control CSS filters using

data-* tags, which are applied during post-processing.

•	 Tiltshift.js – this library replicates a tilt-shift effect using data-* tags

and standard CSS filters. It can be downloaded from http://www.

noeltock.com/tilt-shift-css3-jquery-plugin/.

One question I hear you ask though, which is why would we use such a library, when

CSS works just as well? Ordinarily I would agree that CSS is a preferred option, but there

may be instances where using a filter library might be more suited:

•	 If you’re using an existing technology, such as D3, then at least one of

the options in the list requires D3 as a dependency – you might prefer

to simply extend the library;

•	 Applying CSS filters will only show the shortcut names in our style

sheet – some of these libraries show the full SVG filter markup, which

gives us more control;

•	 You may prefer to simply concentrate on applying markup to your

content, and deal with styling as part of post-processing for your

project. In this case, we could use the Philter library, which is designed

for this purpose, rather than worrying about which CSS filters to apply.

There is one other library we’ve not mentioned in our list of possible options – that

library is SVG.js. This has a filter plug-in that comes with the library and allows us to

apply all manner of SVG filter effects, using a simple JavaScript syntax. To see how

easy it is to apply, let’s knock up a quick demo using the plug-in – we’ll use it to apply a

standard Gaussian blur effect to an image, as part of our next demo.

APPLYING FILTERS USING JAVASCRIPT

For our next demo, we will apply a simple Gaussian blur filter over an image from the Unsplash

image library, which you can view at https://unsplash.com/photos/uwbajDCODj4. It’s

a very peaceful one of a Stockholm archipelago, taken by Anders Jildén – the principle we will

use though can be applied to any image we need to use in our projects.

Chapter 9 Incorporating SVG Libraries

http://specro.github.io/Philter/
http://www.noeltock.com/tilt-shift-css3-jquery-plugin/
http://www.noeltock.com/tilt-shift-css3-jquery-plugin/
https://unsplash.com/photos/uwbajDCODj4

260

Let’s make a start on our demo:

	1.	 We’ll begin by extracting a copy of the filter folder that is in the code

download that accompanies this book; save this to our project folder.

	2.	N ext, go ahead and create a new text file, saving it as filter.js in the js

subfolder – add in the following code:

var draw = SVG('drawing').size(500, 500);

var image = draw.image('https://images.unsplash.com/

photo-1498550744921-75f79806b8a7?fit=crop&fm=jpg&h=500&

q=75&w=800')

.size(500, 500);

image.filter(function(add) {

 add.gaussianBlur(3, 0)

});

	3.	 Save the file – if we preview the results, we should see a very blurry photo,

similar to the one shown in Figure 9-5.

Figure 9-5.  Applying a Gaussian filter

Chapter 9 Incorporating SVG Libraries

261

This was a really simple demo, to give you an idea of how easy it is to apply filters

using the SVG.js filter plug-in. We could easily take it further by chaining together

multiple filters, in much the same way as we might be using standard CSS. That aside,

using JavaScript does afford us a couple of advantages, so without further ado, let’s take a

look at the code in more detail.

�Exploring the Code in More Detail
Although our code at first glance appears to be very simple, it hides a lot of the grunt

work required to configure an SVG filter. To see what I mean, take a look at the code from

our demo using a DOM inspector, and you will see something akin to the extract shown

in Figure 9-6.

All of that markup was added from one line of code in our demo! It’s easy to see why

using a library such as SVG.js is useful; we can concentrate on using the core effects

such as Gaussian blur to re-create the effect that we need, without worrying about the

markup. If you remember back as far as Chapter 5, “Applying Filter Effects,” we had to

create the SVG filter manually; this way, we can focus on creating the effect, then copy

and paste the resulting markup into our code (and remove the plug-in) once we’ve

achieved the desired effect.

The code we’ve used is very simple – we start with defining a new SVG object to the

draw variable; this is used to create the SVG container we saw in Figure 9-6. Next up,

we then draw our chosen image (in this case, the background image from the Unsplash

library), in our SVG container, setting it at a size of 500px square. We then finish by

applying a filter effect of GaussianBlur, using a (stdDeviation) value of 3.

Figure 9-6.  Our Gaussianblur filter under the microscope

Chapter 9 Incorporating SVG Libraries

262

The real beauty of this though is that we can manipulate the effects at a DOM level

using JavaScript – if we were using plain CSS, then all we would be able to do is override

an existing rule with a new one. If we were using JavaScript, we could run code such as

this example:

var blur = document.getElementById("blur");

blur.setAttribute("stdDeviation", "5");

…if we wanted to dynamically change our filter effect at the point of triggering an

event such as clicking a button or hovering over an image.

Thinking further afield though – SVG.js’ filter plug-in is perfect for creating some

more advanced filter effects; one that comes to mind is the backdrop filter. It’s a great

effect for removing some of the distraction if you have text overlaid on a busy image, for

example – you can see it in use in a Codepen example I’ve created at https://codepen.

io/alexlibby/pen/BxwzQb.

A word of warning – support for this filter is patchy with only Edge and Safari

supporting it without requiring some form of flag to be enabled. Chrome will support it

if the Experimental Web Platform features setting is enabled; Firefox doesn’t support it

at present, but this is likely to change. It’s a good reason why SVG filters can be used to

create this effect – the developer Vincent de Oliveira has created an example at

https://codepen.io/iamvdo/pen/VLOGdw, which I think could be achieved using SVG.js!

If you want to really experiment with filters, then try installing the CSS filters
console tool extension for Chrome: it’s available from https://github.com/
spite/css-filters-devtools-extension and allows us to tweak filter
settings directly in the browser.

�Summary
When working with SVG as a medium, we can achieve a great deal using nothing more

than a text editor and a little imagination; there are occasions though when we may need

to resort to using a library to give us a little helping hand. Throughout the course of this

chapter, we’ve touched on a few examples of what is available; let’s take a moment to

review what we’ve learned.

Chapter 9 Incorporating SVG Libraries

https://codepen.io/alexlibby/pen/BxwzQb
https://codepen.io/alexlibby/pen/BxwzQb
https://codepen.io/iamvdo/pen/VLOGdw
https://github.com/spite/css-filters-devtools-extension
https://github.com/spite/css-filters-devtools-extension

263

We kicked off with a quick discussion on the merits of choosing a library, before

taking a look at some of the options available and understanding why it pays to choose

carefully. We then dived into a number of demos, starting with learning how to draw

images using the Vivus library. We then explored how to create bubble charts using D3,

before getting animated with the Anime.js library, and finally finishing with a different

take on creating SVG filters using JavaScript.

Phew – it doesn’t seem a great deal, but we’ve certainly explored a few options! Our

journey through the world of SVG continues apace; in the next chapter we will take

things up a notch, by exploring some more real-world examples of what can be achieved

using SVG.

Chapter 9 Incorporating SVG Libraries

265
© Alex Libby 2018
A. Libby, Beginning SVG, https://doi.org/10.1007/978-1-4842-3760-1_10

CHAPTER 10

Taking It Further
We’re almost at the end of our journey through the world of SVG in the browser –

question is, what next? Where can we go from here? Well, that’s easy to answer: over the

course of this chapter, we’ll work our way through some more involved examples, to give

you, the reader, a flavor of what is possible, and why it is worth making the transition to

using SVG within your web projects.

�Manipulating SVG with JavaScript
Throughout the course of this book, we’ve made use of a number of libraries to help

create and manipulate SVG graphics – after all, if it helps make it easier to create a

custom animation effect, or that stunning piece of artwork, when time is against us, then

using a library will clearly help save time.

However, what if for some reason this wasn’t possible? If for example you’re working

on a code-heavy site where site speed is super critical, we may be forced to go native (so

to speak), and edit our SVG content manually.

Thankfully this is easy enough to do using standard JavaScript – it can be quite

refreshing to not have to use a library for once! To see how easy it is, I’ve created a very

rough and ready demo in CodePen – trust me: it won’t look perfect, but it’s about the

process, and not just the final answer.

MANIPULATING SVG IMAGES USING JAVASCRIPT

Let’s make a start on setting up our code, before exploring what each part does in more detail:

	1.	 We’ll begin by extracting a copy of the vanilla folder and save it to our

project area.

	2.	 Next, go ahead and browse to https://codepen.io, then hit Create | New

Pen, and copy the contents of markup.txt file into the HTML pane.

https://codepen.io

266

	3.	 We need to add a little styling, so let’s add the style rules from styles.txt in

the CSS pane of our session.

	4.	 Finally, let’s add in the script that provides the magic that makes it all work –

copy and paste the contents of script.txt into the JS pane of our CodePen

session.

	5.	 Go ahead and save your work – you can save it as Anonymous or under your

own account, if you have an existing login for CodePen.

	6.	 If all is well, we should see something akin to the screenshot shown in

Figure 10-1.

Figure 10-1.  Playing with SVG and JavaScript...

Well, I’m sure you will agree that it is no masterpiece, but don’t say I didn’t warn you!

Our demo was all about having a bit of fun, with no expectation that it would be perfect,

but more about learning the process involved in creating our shapes. This said, the demo

exposed a number of key principles, so let’s explore these in more detail.

Chapter 10 Taking It Further

267

�Dissecting the Markup Code
If we are not able to make use of a library, then clearly we need to add code to manage

functionality otherwise taken care of by the library. One might be forgiven for thinking

that we are between a rock and a hard place – what we gain in site speed (from not

calling extra resources), we risk losing when adding additional code! Granted, we won’t

be adding so much, but it is a risk we still need to manage carefully.

Keeping this in mind, let’s take a look at the code we used in more detail – we will

split this into two parts, starting with creating each object used in the demo:

The markup we’ve used is nothing new – we set up an initial <div> to act as our

container, inside of which we create an SVG element. We add in a number of shapes –

it starts with a standard <rect>, followed by a <circle>, then <text> and <polygon>

objects:

<div id="container">

 <�svg id="site" xmlns="http://www.w3.org/2000/svg" height="300"

width="500" preserveAspectRatio="xMidYMax meet">

 <rect x="0" y="0" width="100%" height="50" />

 <circle id="btn" cx="80" cy="150" r="20"/>

 <text x="15" y="35" fill="white">This is our SVG</text>

 <�polygon id="square" points="100,30 180,30 180,100 100,100" fill="grey"

stroke="#000">

 <�animate begin="square.click" id="movepoint" begin="indefinite"

fill="freeze" attributeName="points" dur="500ms" to="30,30 150,30

100,100 30,100" />

 </polygon>

</svg>This is where things get a little more interesting – we’ve implemented two

event handlers: one to animate the polygon object:

 <input type="button" value="Click Me" />

… with the second used to change the color of the polygon object defined with an ID

of square:

 <input type="button" value="Set fill color" onclick="setFillColor()"/>

</div>

Chapter 10 Taking It Further

268

We now come to the crux of our code – the JavaScript used to create and manipulate

additional shapes used in our demo. We kick off with setting a number of variables that

are used in our code:

// define variables

var svg, svgStar, rotation = 0, a = 0;

var svgns = "http://www.w3.org/2000/svg";

var circleBtn = document.querySelector("#btn");

var svgBox = document.querySelector("#site");

var circleBtn = document.querySelector("#btn");

We then create the first of our additional shapes – a polygon, which will be displayed as

a triangle on screen. We’ve used the createElementNS method to construct it, passing in

the SVG namespace.

It’s important to note that when creating SVG objects in code, we should use this to

construct our shape, when we might otherwise have used createElement.

Why? There is a valid reason for this – using document.createElement is the

standard method for creating elements within JavaScript. However, SVG as a format uses

namespaces; we can separate common elements or objects that are on the same page

but were created using different sources. If we use createElementNS, this simply allows

us to group common elements together with a common namespace (or identity tag), so

that we can style only those elements that should be styled.

We then set the various points of our shape, before appending it to the main SVG

specified in the HTML pane of our demo (under the ID of #site):

// Create SVG polygon shape in code

var polygon = document.createElementNS(svgns, "polygon");

polygon.setAttributeNS(null, "points", "150,10 200,140 110,160");

svg = document.getElementById('site').appendChild(polygon);

polygon.id = "triangle";

It’s worth noting that you can get away with using .setAttribute but ideally
should use .setAttributeNS for the same reason. Take a look at the code
coming up for the Bezier curve – you will see both formats in use, although the
latter is preferable!

Chapter 10 Taking It Further

269

Moving on, we can create other objects using similar code – this example is for the

star within the demo:

// Create SVG star and fill it in code

var star = document.createElementNS(svgns, "polygon");

star.setAttributeNS(null, "points", "100,10 40,198 190,78 10,78 160,198");

star.setAttributeNS(null, "fill", "gainsboro");

svg = document.getElementById('site').appendChild(star);

star.id = "star";

Now you may think that creating a Bezier curve might require something more

complex – this isn’t the case: we can use the same format here too:

var bezier = document.createElementNS(svgns, "path");

bezier.setAttributeNS(null, "d", "M40,125 C15,5 110,5 120,55");

bezier.setAttribute("fill", "none");

bezier.setAttribute("stroke", "#333");

bezier.setAttribute("stroke-width", "2");

svg = document.getElementById('site').appendChild(bezier);

bezier.id = “bezier”; At this point, all of our objects have been created – I profess that

they haven’t all been positioned in ideal locations onscreen, but then this is all part of

experimenting with code! Let’s move on and take a look at the second part of the code

we’ve used in this demo, beginning with moving our viewBox dynamically.

�Dissecting Our Code – the Functions Used
Although much of our code caters for creating the additional SVG objects, this is only

part of the story – we’ve added in a handful of functions to illustrate how we might

manipulate these SVG objects using nothing more than plain JavaScript.

Our first example takes care of moving the visible area of the SVG, by updating the

values set for our viewBox:

// Move viewBox on click of circle

circleBtn.addEventListener('click', moveSVG, false);

function moveSVG() {

 a-= 10;

 svgBox.setAttributeNS(null, "viewBox", a + " " + a + " 200 150");

}

Chapter 10 Taking It Further

270

We can clearly see that the code used is standard JavaScript, but with one exception –

we’ve used the setAttributeNS method to recalculate the position of our viewBox. If

you remember from the previous section, we talked about the fact that SVG is a format

that relies on the use of namespaces, so specifying it here avoids the risk of collision with

other code on the page intended for other applications.

The second function we created is a very simple click-based event handler – for this,

we simply put an alert on screen to confirm that a user has clicked on the star:

// Show message on click of star

star.addEventListener('click', click, false);

function click(e) {

 alert("star clicked!");

}

The third and final function is a little more complex but nothing complicated; here

the setFillColor function is fired as soon as we click on the square SVG. This time

around, we’re changing the color to a shade of light gray:

// Fill a shape with random colors

document.querySelector("#triangle").addEventListener('click', setFillColor,

false);

function setFillColor() {

 var triangle = document.getElementById('triangle');

 var r = Math.floor(Math.random() * 255);

 var g = Math.floor(Math.random() * 255);

 var b = Math.floor(Math.random() * 255);

 triangle.style.fill = 'rgb(' + r + ', ' + g + ' , ' + b + ')';

Our demo isn’t complete though – we’ve also specified a handful of style rules to add

some color (yes, even in black and white print!) to our demo, and a simple animation

effect when hovering over the square SVG:

@import url('https://fonts.googleapis.com/css?family=PT+Sans');

body { font-family: "PT Sans", sans-serif; color: antiquewhite; }

#container { margin: 6rem; }

Chapter 10 Taking It Further

271

svg { border: 1px solid #000; font-size: 36px; }

circle { fill: slategrey; cursor: pointer; }

#triangle { fill: darkgrey; stroke: black; stroke-width: 1;

 transform: scale(0.5); width: 150px; cursor:pointer; }

#star { fill: antiquewhite; transform: translate(150px, 40px);

 cursor: pointer; }

#btn {

 cursor:pointer;

}

Phew – that was one monster deconstruct! That aside, it shows that we can

manipulate SVG elements using nothing more than plain JavaScript, although

one must weigh up whether it is worth the effort required if your project demands

anything more than a simple effect using SVG. It is always worth considering if your

solution can be achieved using plain JavaScript, although the pressures and demands

on your time and project may mean that using a library is the most effective and

practical option!

�Animating Borders Using SVG
Although we may want to use JavaScript to manipulate our SVG graphics, I’m a great

believer in the KISS principle (“Keep it Simple,...” – you get the idea!). There are

occasions where creating something simple can have just as much (if not more)

impact than a more complex affair.

To see what I mean, and for our next exercise, we’re going to create a simple,

if somewhat unusual, effect. Let’s say you hover over an image which could be

expanded - you would expect something to happen to indicate this, such as the

level of opacity increasing, right? Or perhaps a border that shows or hides when

hovering…?

This sounds pretty straightforward, right? We could easily create something in our

sleep – nothing difficult here! But – what if we were to use animation to create something

a little different? Sure, our border will still appear, but let’s just say that it won’t be quite

what you might expect…

Chapter 10 Taking It Further

272

ANIMATING BORDERS WITH SVG

Intrigued? Let’s get cracking on our code:

	1.	 We’ll start by extracting a copy of the pyramid folder that is the code download

that accompanies this book – go ahead and save it to our project folder.

	2.	 Next, we need to set up our base markup – for this, go ahead and open

pyramid.html, then add the following lines of code immediately after the

<h2> element:

 <svg height="490" width="655" xmlns="http://www.w3.org/2000/svg">

 <rect class="shape" height="490" width="655" />

 <div class="content">

 <p>Pyramids at Giza, Eygpt</p>

 </div>

 </svg>

	3.	 If we run our demo now, we clearly won’t see anything of real interest, save for

a picture of the Pyramids! Clearly, we need to add some animation, so go ahead

and create a new file called pyramid.css in the css subfolder.

	4.	 There are a few styles required, although nothing too heavy – we will add

them block by block, starting with some rules to style the original markup and

position our image:

@font-face { font-weight: normal; font-family: 'pt_sansregular'; src: url

('../font/pt_sansregular.woff') format('woff'); font-style: normal; }

html, body {text-align: center; height: 100%; overflow: hidden;}

body { font-family: 'pt_sansregular', sans-serif; padding: 2rem;

 font-size: 1.125rem; }

img { position: relative; filter: sepia(10); }

	5.	 In order to facilitate the required animation effect, we will make use of a

container – for this, add the following code, leaving a line blank after the

previous rule:

.container { position: relative; top: 0.625rem; margin: 0

auto; width: 40.9375rem; }

Chapter 10 Taking It Further

273

	6.	 This next block of code takes care of hosting our image – for this, we’re creating

a <rect> element and applying a standard CSS transition on three elements:

rect { stroke-dasharray: 150 210; stroke-dashoffset: 0; stroke-width:

3px; fill: transparent; stroke: #b491a1; border-bottom: 0.3125rem

solid black; transition: stroke-width 1s, stroke-dashoffset 1s,

stroke-dasharray 1s; }

	7.	 For the animation to kick in, we need to apply a :hover – add the following

rule to take care of this for us:

.container:hover rect { stroke-width: 0.375rem; stroke-dashoffset: 0;

stroke-dasharray: 2560; }

	8.	 These last two rules deal with styling our text, and positioning it as desired

within our SVG:

.content { font-size: 1.375rem; line-height: 2rem; letter-spacing:

0.5rem; color: #fff; top: -29.875rem; position: relative; color:

#b491a1; }

.content p { margin-top: 0.3125rem; }

	 9.	 At this point, go ahead and save the file – if we preview the results of our work,

we should see something akin to the screenshot shown in Figure 10-2.

Figure 10-2.  Animating border trick

Chapter 10 Taking It Further

274

Hopefully you will agree that this is something different – the style may not appeal to

everyone, but then again, I’ve not always been one for conforming to the norm! Although

there is nothing in this code that we not seen before, it’s worth taking a few moments to

review it in more detail, to understand exactly how it works.

�Dissecting the Demo
If we take a look at the markup for our demo, we can see the bulk of our demo is

contained within a standard SVG object that sits inside the .container div. Inside this

SVG we use a <rect> that provides the border effect, along with the content div that

houses both the image and image label.

The key to making it work lies in the style rule applied to the <rect> element and the

associated hover event. In this case, we’ve applied three stroke values, namely stroke-

dasharray, stroke-dashoffset, and stroke-width. The first controls the length of each

dash around the image, interspersed with the whitespace; stroke-dashoffset controls

at what point we start the border, and stroke-width for the thickness of this border.

We start by setting dashes of 150 units, followed by spaces of 210 units wide; we want

this to start from point zero, so stroke-dashoffset is not needed and therefore set to

zero. At the same time, our border is set to 0.1875rem, or 3px thick.

When hovering over the .container element, this is set to inherit child elements, so

it includes the image and text; the border thickness increases to 0.375rem or 6px. At the

same time, we no longer want our border to have gaps, so set it to 2560; this has the effect

of showing one long dash around the entirety of the image.

Okay – let’s move on: time for something different, methinks! I don’t know about you,

but I’ve lost count of the number of sites that use the same format for navigating around

the site. Sure, it might be the classic hamburger approach for mobile or responsive sites,

but in many cases, it is likely to be the typical linear affair. I think it’s time to change that

and go for something a little more unusual…

�Creating Menus Using GSAP and SVG
Hopefully that last comment has left you a little intrigued – if so, let me explain all:

What if we could create the basis for a menu, but this time use animation to blow it

up like an expanding circular overlay, over our main text? Fortunately, one kind soul has

already created something that shows off the power of SVG; it uses the GSAP animation

library (available from https://www.greensock.com).

Chapter 10 Taking It Further

https://www.greensock.com

275

That kind soul (and where credit is due), is Breno Thales; you can see his original

version at https://codepen.io/brenothales/pen/MKaxaq. Our version will use a

slightly different color scheme, but the functionality will remain unchanged.

CREATING MENUS USING GSAP

Before we get started, it’s worth nothing that our next demo will be created using the

MorphSVG plug-in, from the GSAP suite. As this plug-in is a commercial offering, we’ll be

using a trial version, which will only work in certain URLs such as Codepen.

With this in mind, let’s make a start with our code:

	1.	 First, we need to extract a copy of the menu folder from the code download that

accompanies this book – go ahead and save it to our project folder.

	2.	 To create our demo, we need to browse to https://codepen.io in your

usual browser – once there, click on Create | New Pen.

	3.	 We’re making use of three external libraries for this demo, so click on Settings

| JavaScript, and add each of the following links into the boxes at the bottom,

underneath External Resource search...

//cdnjs.cloudflare.com/ajax/libs/jquery/2.1.3/jquery.min.js

//cdnjs.cloudflare.com/ajax/libs/gsap/1.18.0/TweenMax.min.js

//s3-us-west-2.amazonaws.com/s.cdpn.io/16327/MorphSVGPlugin.

min.js?r=182

	4.	 From the code we downloaded in step 1, copy and paste the contents of the

markup.txt file into the HTML pane.

	5.	 Next, go ahead and copy and paste the contents of the styles.txt file into

the CSS pane within Codepen.

	6.	 We’re almost done – to tie everything together, and make our menu operate,

we need to add our script. For this, copy the contents of the script.txt file

into the JS pane.

	7.	 At this point hit the Save button – you can either save it as Anonymous, or

under your own account if you already have one with Codepen.

Chapter 10 Taking It Further

https://codepen.io/brenothales/pen/MKaxaq
https://codepen.io

276

If all is well, we should see something akin to the screenshot in Figure 10-3.

Hopefully you will agree that this could prove to be a more interesting way to display

our content! The real beauty is that we could potentially use this effect elsewhere – how

about as an image overlay?

It would certainly be a more unusual option, but who says the rule book can’t be

broken sometimes? That aside, this demo contains some useful tips, particularly when

animating content with the GSAP library – let’s dive in and take a look at our code in

more detail.

Figure 10-3.  Our finished menu using GSAP

Chapter 10 Taking It Further

277

�Understanding How It Works
If we take a closer look at the code we put together in our Codepen demo, it might at first

glance look a little complex. However, this example relies on one simple trick – we’re

animating content from one state to another but doing it in stages (just like a bus travels

from point A to B via C).

A large part of our markup forms the background container, inside we start with an

empty placeholder for our circular menu (#menu). We also specify some simple markup

to create a series of blocks (within the .navbar class), which will act as our background

content. The real meat of our markup though is in two SVG group elements, inside of

which are a number of SVG paths: the animgroup takes care of animating the circular

menu, while the linegroup creates the fake menu entries.

To make our demo work, we’ve used the morph.to method from the morphSVG

plug-in, to animate the content. This sets the starting point as #state1, which we then

morph to #state2 using a Sine.easeIn easing effect. We then immediately jump back

to #state1 and morph through to #state3, this time using an Elastic.easeOut easing

effect. We then finish off the demo with two event handlers, which check to make sure

we are at point zero (i.e., can animate to the circular menu) or reset the code so that the

animated menu can reverse direction and be closed back to our original content.

Okay – let’s change tack and move onto something completely different: lazy loading.

I’m sure you will be familiar with the principle of placeholders that are subsequently

replaced with the real image, right? Well, instead of inserting lots of lo-res images as

placeholders, how about using SVG to create something similar?

�Lazy Loading with SVG
As a principle, Lazy loading is nothing new – it’s been around since at least 2003; it’s a

useful technique to delay loading of image content until the last possible moment. It’s

particularly important in an age where mobile usage is becoming more popular than

normal desktop usage, and removing bottlenecks in loading pages is an essential part of

any designer’s work.

The challenge we have though is that we clearly need something to act as a

placeholder for each image. Ordinarily we might use a low-resolution image – this would

work, but calling another image as part of the solution defeats the purpose of what we’re

trying to achieve!

Chapter 10 Taking It Further

278

Instead, why not use SVG? It might not seem obvious, but as a format it lends itself

really well to this technique:

•	 We can scale it to any size without loss of quality;

•	 It can be stored inline as markup, without the need to call a separate

resource;

•	 It can be reused throughout the site, avoiding the need to create or

manage multiple low-res placeholder images.

There are a couple of ways we can create a lazy loading effect that makes use of SVG –

in both cases, we use SVG as the placeholder. The image can then be introduced once

a random timeout value has passed, or we use a window.onload() to prevent loading

until everything else is in place. To see how it works, let’s dive in and take a look at some

example code in more detail.

LAZY LOADING WITH SVG

For our next demo, we’ll use the first of the two methods – we’ll load an image once

a randomly set timeout value has passed (more on this later). This is to simulate the

time it might take for other content to appear, which may vary; once done, the image

can then be displayed in all its glory. The image we will use is from the Unsplash image

library; it is one of a vintage camera, and it is available from https://unsplash.com/

photos/1oke6gf5vKo.

This example works very well when run locally or in a Codepen – see my version
online at https://codepen.io/alexlibby/pen/ELrXYz. Note though, that it
will take a few seconds for the image to appear – it pays to be patient!

Let’s crack on with creating our demo:

	1.	 First, go ahead and extract a copy of the lazyload folder that is in the code

download that accompanies this book; save it to our project folder.

	2.	 Next, we need to add in our SVG markup – for this, copy and paste the contents

of the markup.html file in just below the opening <body> tag and comment

in our file.

Chapter 10 Taking It Further

https://unsplash.com/photos/1oke6gf5vKo
https://unsplash.com/photos/1oke6gf5vKo
https://codepen.io/alexlibby/pen/ELrXYz

279

	3.	 We need a little styling to position the image – for this, add the following rules

to a new file, saving it as lazyload.css in a css subfolder:

@font-face { font-family: 'pt_sansregular'; src: url('../font/pt_

sansregular.woff') format('woff'); font-weight: normal; font-style:

normal; }

body { margin: 2rem; font-family: 'PT Sans', sans-serif;

 font-size: 1.125rem; }

.imageContainer { float: left; height: 0; padding-bottom: 33.33%;

position: relative; width: 50%; }

svg, .image { height: 200%; left: 0; position: absolute;

 width: 100%; }

.image { opacity: 0; transition: opacity 300ms; background-size:

cover; }

.image-displayed { opacity: 1; }

@media all and (max-width: 480px) {

 .imageContainer { padding-bottom: 66.67%; width: 100%; }

}

	4.	 To finish it all off, there a little JavaScript we need to add to provide the final

effect – for this, go ahead and copy and paste the contents of script.js into

a new file in the js subfolder, saving it as lazyload.js:

setTimeout(() => {

 var elem = document.querySelector('.image');

 �elem.style.backgroundImage = 'url(https://images.unsplash.com/photo-

1510141365970-ac1f0f80b1a5';

 elem.classList.add('image-displayed');

}, Math.random() * 2000 + 500);

For the purposes of this demo, we’ve set a random time, to simulate the fact that
resources do not always load in the same order consistently. I would recommend
though that in production use, the time taken to load should be tested, and that a
value to cover this plus some leeway, be used instead.

	5.	 Save the file as lazyload.html – if we preview the results in a browser, we

should see something akin to the screenshot shown in Figure 10-4.

Chapter 10 Taking It Further

280

For such a useful effect, this surely has to be one of the simplest ones to implement!

If we examine our code in detail, it might look like we have a fair amount in use, but

much of this is for the SVG placeholder. The real crux of the code is in the small amount

of JavaScript that we use – let’s take a look to see how it works in more detail.

�Breaking Apart Our Code
We begin first with setting a div with a class of imageContainer; this is purely to group

the two parts of our demo together. The first part of our code is our SVG image; we’ve

used a random one in our code, but this could easily be a company logo or motif. It

doesn’t really matter what we use, although I would recommend keeping it simple. The

more complex our SVG, the more code it requires; we’re not going to see it for too long,

so detail will be redundant.

Figure 10-4.  Lazy loading an image

Chapter 10 Taking It Further

281

The second part of our demo is really simple – we include a single div (with a class

of image) as a placeholder for our final image. This is loaded using a plain vanilla script;

in this, we get a reference to the aforementioned div, then set our picture from the

Unsplash library as the background image. We then add a class of image-displayed;

it’s not used in our demo but would act as a trigger to confirm that the image has been

loaded on the page.

Note  If you decide to try this in a Codepen demo, then you may want to
replace the font declaration with this line, to allow it to work in the same way
as our offline demo: @import url('https://fonts.googleapis.com/
css?family=PT+Sans');

I hope you’re suitably rested after that mini demo, as I have a real corker of an

exercise coming up for you! For our next demo, we’ll be revisiting a subject we’ve already

touched on earlier in the book. – creating charts. Remember how we created various

types, such as bar and pie charts? They were easy enough to do; this time though, we’ll

put a whole new spin on things, and incorporate a simple pie chart into a template-

based framework.

�Creating Template-Based Charts
Back in the day, we didn’t have that – we had to do it by hand…

A phrase that often comes to mind when working with template libraries – it serves

as a reminder that the days of cranking code markup have long since gone! (Although

I still think that sometimes it would be nicer to be able to get back to grassroots, so to

speak – but I digress…)

Anyway – enough reminiscing: our next demo will focus on using a template

library to create an SVG chart. However, we’re not going to use one of the “big boys”

like Angular or React, but something different: Ractive. Created by the IT team at the

Guardian newspaper here in the UK, it’s a lightweight framework that operates in much

the same way as its bigger cousins, but without all of the overhead or baggage that come

with the larger libraries.

Chapter 10 Taking It Further

https://fonts.googleapis.com/css?family=PT+Sans
https://fonts.googleapis.com/css?family=PT+Sans

282

If you are interested in learning more about Ractive, then I would recommend
perusing my book, Beginning Ractive.js (Apress, 2017).

For the demo, we’re going to use Ractive to create a standard pie chart that displays

population counts for five countries, namely Italy, Mexico, France, Argentina, and Japan.

We’ll add in our data from a JSON source using AJAX and use a couple of libraries to

create a color scheme for our chart, based on two given colors. Our demo is based on a

version created by Marcello la Rocca; I’ve simplified some of the functionality, reduced

the data files in use, and updated both Ractive and jQuery to more recent versions.

CREATING TEMPLATE-BASED CHARTS – PART 1

Before we go ahead with developing our code, there is one small thing we need to do, and that

is set up a local webserver. Unfortunately, JSON files can’t be loaded from the file system – the

only way to do this is under the HTTP protocol.

For this, we can use any local web server, such as XAMPP (https://www.apachefriends.

org), or even the simple HTTP-Server available from NPM at https://github.com/

indexzero/http-server is perfectly fine for this purpose.

Assuming we have a local working server installed, let’s make a start on our code:

	1.	 We’ll begin by extracting a copy of the ractive folder from the code download

that accompanies this book – go ahead and save it to our project area.

	2.	 Next, go ahead and open ractive.html – we now need to add in our markup.

There is a fair bit to add in, so we’ll go through it block by block, starting with

the container pie <div> and opening <script> tag:

<div id='pie'></div>

<script id='myTemplate' type='text/ractive'>

	3.	 We can now add in our opening tags and title:

 <div class="panel panel-default">

 <div class="panel-heading">

 <�h2 class="panel-title">Beginning SVG: Creating Population Charts</h2>

 </div>

Chapter 10 Taking It Further

https://www.apachefriends.org
https://www.apachefriends.org
https://github.com/indexzero/http-server
https://github.com/indexzero/http-server

283

	4.	 Next in comes the main part of our SVG – this first block takes care of creating

the base pie chart:

 <div class="panel-body">

 <svg width=375 height=400>

 <g transform="translate(180, 200)">

 �{{# Pie({center: center, r: r, R: R, data: countries, accessor:

accessor, colors: colors}) }}

 {{# curves:num }}

 �<g transform="translate({{ move(sector.centroid,

expanded[num]) }})">

	5.	 Our demo uses a gradient effect to add some styling to each tranche in the pie

chart; this is taken care of by this block:

 <linearGradient id = "grad-{{ num }}">

 <�stop stop-color = "{{ color_string(color) }}" offset = "0%"/>

 <�stop stop-color = "{{ lighten(color) }}" offset = "100%"/>

 </linearGradient>

 <path d="{{ sector.path.print() }}" fill="url(#grad-{{ num }})" />

	6.	 We can’t have a pie chart without some form of labelling – we add the details

using this <text> element:

 <�text text-anchor="middle" transform="translate({{ point(sector.

centroid) }})">{{

 item.name }} ({{ item.population }}m)</text>

 </g>

	7.	 Last but by no means least, we need to close out our demo with a handful of

tags, including one to indicate that our population figures are in the millions:

 {{/ curves }}

 {{/ end of pie}}

 </g>

 </svg>

 <p class="tagline">Numbers shown in millions</p>

 </div>

 </div>

</script>

Chapter 10 Taking It Further

284

	8.	 To tie it all together, we need to place a call to Require.js, to reference each

script module as needed:

<script data-main="js/demo" src="js/require.js"></script>

At this point, save your work and take a breather for a moment – we have our markup in

place, but it won’t come to life until we add in our JavaScript code.

Ractive works on the basis that data is stored away from the markup in one big

configuration object; for now, let’s add that block in, before we go through it in more

detail at the end of this next exercise.

CREATING TEMPLATE-BASED CHARTS – PART 2

In the second half of this project, we’re going to concentrate on the JavaScript code that is

required to make our demo work – it might seem like a lot, but a good chunk of this takes care

of calling in each script library as needed, along with loading our data from JSON files using

AJAX.

As before, we’ll go through it in more detail at the end of this exercise, but for now let’s get it

up and running:

	1.	 We’ll start by opening a new document in your normal text editor, saving it as

demo.js in the js subfolder of our ractive folder.

	2.	 Next, go ahead and add in each block in turn – this first one configures Require.js,

to point it to the relevant libraries that we will make use of in our demo:

requirejs.config({

 "baseUrl": "js/dist/amd/",

 "paths": {

 "jquery": "../../jquery.min",

 "ractive": "../../ractive",

 "Colors": "../../colors",

 "util": "../../util",

 "pie": 'pie'

 }

});

Chapter 10 Taking It Further

285

	3.	 With Require.js configured, next comes the call to each library:

require([

 'jquery',

 'ractive',

 'pie',

 "Colors",

 "util"

], function($, Ractive, Pie, Colors, util) {

	4.	 We now start the core part of our code – the first step is to set the use

strict statement, to help enforce better error checking in the browser. We

then follow this with a function to load the data from a JSON file (this could

easily be extended to use multiple files):

 "use strict";

 function loadCountries(dataset) {

 �$.ajax({url: dataset, headers: {'Content-Type': 'application/json'},

processData: false})

 .done(function (data) {

 data = JSON.parse(JSON.stringify(data));

 ractive.animate('countries', data);

 })

 .fail(function (err) { console.log("ERROR LOADING JSON", err);

 });

 }

	5.	 Our pie chart of course needs some color – for this, we’re using the Colors

library to mix up each color in turn, based on two given colors (a shade of dark

gray-blue and light gray-orange):

�var palette = Colors.mix({r: 112, g: 128, b: 144}, {r: 250, g: 235,

b: 215});

	6.	 Next in comes the core of our code – the Ractive object; here we initialize

Ractive with each of the various sections, beginning with the target location and

template to use:

 var ractive = new Ractive({

 el: 'pie',

 template: '#myTemplate',

Chapter 10 Taking It Further

286

	7.	 We need to specify a data block – this covers a number of different pieces of

data, such as specifying our pie chart, center of our chart, the radius and size,

along with the dataset to use:

 data: {

 Pie: Pie,

 center: [0, 0],

 r: 20,

 R: 150,

 countries: [],

 expanded: [],

 datasets: [{label: "Mixed", filename: "json/countries.json"}],

 accessor: function (x) {

 return x.population;

 },

 colors: util.palette_to_function(palette),

 move: function (point, expanded) {

 var factor = expanded || 0;

 return (factor * point[0] / 3) + "," + (factor * point[1] / 3);

 },

 point: function (point) {

 return point[0] + "," + point[1];

 },

 lighten: function (color) {

 return Colors.string(Colors.lighten(color));

 },

 color_string: Colors.string

 }

 });

It is worth noting that our data block also includes functions to create the color
scheme used, along with positioning each data label in our chart.

	8.	 We finish with placing a call to the loadCountries method, to get and load

our JSON data file:

 loadCountries(ractive.get('datasets')[0].filename);

});

Chapter 10 Taking It Further

287

	9.	 At this point, go ahead and save the file – if all is well, we should see the

screenshot shown in Figure 10-5 when previewing the results in a browser:

�Dissecting the Code
If you were asked to write a summary of this demo, you might be forgiven for thinking

where it is that one would start to explore how it works, there is so much code! Our demo

looks complex, but in reality, it is simpler than it looks: a good chunk is there to support

Require.js and the loading of data. The crux of our demo centers around two files –

ractive.html and demo.js; these contain the markup and script required to make our

demo operate. Let’s take a look at the code in more detail, starting with ractive.html.

If you open up ractive.html, a large chunk of it contains standard HTML markup;

you will notice that much of this code has been wrapped in a <script> block. The

difference here is in the use of the <....type="text/ractive"> tag; this is used by

Ractive to define the template in our demo (more on this shortly).

Figure 10-5.  Our finished chart, displayed using Ractive

Chapter 10 Taking It Further

288

Take a closer look at the code though, and you will see several examples of {{...}}

in the code. These are used as placeholders for our content – take, for example, the

item.name and item.population values in line 27.

These correspond to the name and population values in our JSON file; the

{{# curves: num }} loop runs through each item in the JSON file and populates

the values in our markup. It’s worth noting though that we make use of a number of

functions in our placeholders – a good example is in line 23, where we call the function

{{ lighten(color) }} to create a lighter shade of one of our base colors, before

inserting it into our markup.

�Exploring the Ractive Script Code
Although the markup plays an important role, it’s only when you view the script does it

all begin to come together and make more sense. If we open the demo.js file, we can see

two blocks at the start – the first configures Require.js to point it to the script libraries we

will use. The second initiates them as a dependency; the script files are not called until

they are needed in the script.

Next up comes a request to load in our JSON file – for this we are using standard

jQuery for convenience; we could use JavaScript (and given this is the only time it

is used, it might be no bad thing to remove a big dependency!). Before we get to our

Ractive script though, we have one final variable definition – this uses the Colors library

to mix two colors to help create our color scheme for the chart.

With these definitions out of the way, we now move onto our Ractive object – this is

made up of three elements, namely el, template, and data. The first, el, is our target

for where the compiled template will be inserted – in this case, the div with an ID of pie.

The template attribute corresponds to the template we will use; remember the script

block we created in our markup file, which has the ID of myTemplate? This is what we will

use to generate our final markup.

The third and final section is data – this contains all of the functions and attributes

used in our markup. This can contain all kinds of content; this might range from simple

values such as r or R (used to specify the radius of our pie chart), through to datasets

(used to specify which data files to use) and colors, where we create our palette based

on the two defined base colors.

We also have a couple of extra functions of note – move and point handle the location

of each label, while lighten is used to create a lighter shade of color for our palette. We

then round out our demo with a call to loadCountries, to initiate our Pie chart with the

appropriate data from the JSON file.

Chapter 10 Taking It Further

289

I would strongly recommend taking a look at the compiled code from within your

browser’s DOM inspector – the compiled version will look something like the screenshot

shown in Figure 10-6. It will help you to understand how the source code has been

transformed into the final solution.

Figure 10-6.  The compiled Ractive code

It might seem a lot of code, but this is a fairly in-depth example – partially to show off

that complexity should not be an issue when using SVG, but also to show a real-world

example of how SVG can be incorporated into sites written using frameworks such as

Ractive. It is worth spending time understanding how this is put together – you may not

use Ractive (although it is a great tool to use), but many of the principles also apply to

the bigger versions such as Angular or React.

Okay – let’s move on: we’re almost at the end of our journey through using SVG, but

to help round out our adventure, we will finish with some smaller, but equally interesting

examples, of how we might use SVG in a more practical context in our projects.

�A Parting Shot
Phew – that last demo was a real monster! Time for something a little lighter, methinks…!

Throughout the course of researching for this book, I’ve come across a fair few

examples of using SVG in a practical context; this included very simple to examples to

Chapter 10 Taking It Further

290

some more detailed solutions. There are a few that I thought were worthy of a mention –

they show that with a bit of ingenuity, it’s possible to produce some really original effects.

Let’s take a look at each of them in turn, beginning with an example that is perfect for a

restaurant or food outlet.

�Tilting UI Effect
Our first example comes courtesy of the developer Neil Pearce – he’s used a mini library

called Tilt.js. Created by Gijs Rogé, the library itself can be downloaded from https://

gijsroge.github.io/tilt.js/.

Neil has put this library to great use, by creating two cards that display information

from a mocked-up page that wouldn’t be out of place on a hotel website. You can

see the demo on Codepen at https://codepen.io/2975/pen/WJwxYv – try hovering

over each card in turn: notice how it tilts slightly as you move the mouse over each

(Figure 10-7):

Figure 10-7.  Making use of tilt.js

Chapter 10 Taking It Further

https://gijsroge.github.io/tilt.js/
https://gijsroge.github.io/tilt.js/
https://codepen.io/2975/pen/WJwxYv

291

In this instance, the demo illustrates how we can make use of other libraries to

manipulate SVG elements with little difficulty; the animation effect is managed within

the SVG, while the tilting effect comes from the Tilt.js library.

�Panning and Zooming Images
This next example features a simple take on an age-old problem – viewing images close

up, particularly those with lots of detail.

The developer Anders Riutta has created a library that enables anyone to pan

or zoom in on an SVG image for this purpose; it can be downloaded from GitHub at

https://github.com/ariutta/svg-pan-zoom. We can see it in use with one of the

demos provided on the main website; as an example, Figure 10-8 shows an inline SVG

image of a tiger in close-up.

Figure 10-8.  Panning and zooming an SVG image

Chapter 10 Taking It Further

https://github.com/ariutta/svg-pan-zoom

292

To really understand how SVG plays its part in this library, I would recommend

taking a peek at the code behind this example; Figure 10-10 shows what the SVG code

looks like from our example.

This is just one way of navigating around SVG images – the library offers support

for a host of different options, such as embedded SVGs, custom events, animation, and

using custom controls.

You can see the original demo on the main website at http://ariutta.
github.io/svg-pan-zoom/demo/inline.html.

�Tracking Progress
Our final example makes use of one of SVG’s key strengths – the ability to use the <path>

element to create any kind of shape, simply by providing suitable coordinates.

This is put to good use in the Progressbar.js library; created by Kimmo Brunfeldt, this

library can be downloaded from http://kimmobrunfeldt.github.io/progressbar.js/.

It’s designed for use in modern browsers, released within the last two to three years; this

includes IE10 and 11! The library produces a clean and slick design – we can see it in

action in a screenshot shown in Figure 10-9.

Figure 10-9.  Animating a SVG progress bar

Chapter 10 Taking It Further

http://ariutta.github.io/svg-pan-zoom/demo/inline.html
http://ariutta.github.io/svg-pan-zoom/demo/inline.html
http://kimmobrunfeldt.github.io/progressbar.js/

293

The great thing about this library is that we don’t even have to provide the path

coordinates to use if we want to use a standard shape; Progressbar.js provides a number

of pre-built options such as circle or line. If though we want to push the boat out (so to

speak), we can of course provide our custom path coordinates in the markup and let the

library take care of the rest…!

�Summary
SVG as a format is hugely versatile – unlike images or other graphic formats, we can

manipulate elements within with ease, using nothing more than standard JavaScript (or

libraries), and plain CSS styling. Over the course of this chapter, we’ve worked through

a number of examples to illustrate how we might use SVG in a real-world example; let’s

take a moment to review what we have learned.

We kicked off with a quick tour on how to create or manipulate SVG objects using

vanilla JavaScript – some might argue that this should be nearer the start of the book, but

we quickly learned how much extra code (and time) is required to add in simple shapes -

which could indeed put beginners off! Making use of a library will frequently be a more

efficient use of time and resources.

Next up came a look at an interesting take on animating borders using SVG – this

illustrated a perfect means of animating a simple change that adds a certain edge to an

otherwise plain image, using nothing more than standard SVG animation.

Our next demo took animation up a notch and explored part of the Greensock GSAP

animation library; we saw how the morphing tool can provide an original solution,

which stands apart from other menus you may have seen online.

We then moved onto exploring a time-honored technique of lazy-loading images –

this is nothing new, but our version swapped in SVG images as placeholders for what

would otherwise be low-resolution images. We covered how this reduces the number of

calls for extra resources, so it ultimately reduces the load on the server and helps retain

page speeds.

Figure 10-10.  An example of how Progressbar.js is used

Chapter 10 Taking It Further

294

Our final large demo explored how we might create template-based charts using a

framework such as Ractive; we learned how we can use such a library to swap in data

and text to a standard chart, so that ultimately our chart can be set as a reusable template

for future projects. We then rounded out the chapter with some smaller examples of how

SVG can be used in a practical context; this was to show that SVG is a versatile format,

and that you are really only limited by your imagination!

Phew – well, all good things must eventually come to a close, as we reach the end

of this book; I hope you’ve enjoyed our adventure through the world of SVG as I have

writing this book.

Chapter 10 Taking It Further

295
© Alex Libby 2018
A. Libby, Beginning SVG, https://doi.org/10.1007/978-1-4842-3760-1

Index

A
Animating chart content

animate segments, 228
button.text() property, 234
buttonX.click() event handler, 235
.circle-front and @keyframes rules, 231
donut chart, 230
jQuery, 234
jQuery-based plug-in, 228
Snap.svg, 232
static charts, 228
stroke-dashoffset effect, 229

Animating content
animatecss.html, 156
creation, clock, 162
CSS animation, 157
cubic-bezier curve, 173, 175
Developer Console, 175
dissection, 165
easing effect, 173
flying birds demo, 157
Google Chrome, 175
image, 155
JavaScript, 157–158
managing multiple animations, 168
moving content, 161
requirements, 176
Snap.svg, 171
SVG, 157, 165–168
third-party libraries, 170

transforming SVG elements, 158
video, 155

B
Background effect, 51–55
Bezier curve, 34

C
CanIUse.com, 10, 52
Charts

amcharts.js, 237
bar chart, 218
benefits, 207
chart interactive, 226
create segment effect, 213
CSS style sheet, 212
donut charts, 209
gradient, 211
infographics, 235–236
library options, 236
line chart, 221
pie chart, 214
radius and viewBox, 217
ring chart, 212
segments, 216
sparkline chart, 224
stroke-dasharray, 212, 216
stroke-dashoffset value, 217
transform() command, 220

https://doi.org/10.1007/978-1-4842-3760-1

296

transform statements, 211
translate command, 220
viewBox values, 215

Circles
and ellipses, 27–30
gauge, 39–41

Clip-paths, 41–44
Coordinate grid system, 14–15
CSS backgrounds, 51–55

D
Data-uris, 52
Donut charts, 209
drawPieChart plug-in, 226

E
Ellipses, 27–30

F
Fallback support

adding, 15–16
CSS error handling, 18
icon system, 20
image, 17
inline support, 18, 20
interactive, 17
no feedback, 17
<picture> tag, 17
text, 17

Filters
Adobe Photoshop, 153
animation, 147, 149
benefits, SVG, 125
blending and merging, 142

changing color, 135
colors, 137
creation, 133
CSS animation, 147
CSS filters, 127
feColorMatrix, 133, 137, 142
feGaussianBlur primitive, 132
Filter Effects library, 258
filters à la Instagram, 141
manipulating content, 130
Phalaenopsis, 149
style sheet, 145
SVG primitives, 128
watercolors, 143
WordPress, 150

G, H
Gauge, circular

code dissecting, 41
create, 39–40

GaussianBlur, 261
Gaussian filter, 260
Gradients

create, 47–49
linear, 49, 51
radial, 49–50

I
Icon system, 20
Images

adding videos, 86
benefits, 63
data URIs, 66
exporting, 63
HTML markup, 73
HTML5 video, 86

Charts (cont.)

Index

297

icons, 74
implementation, 89
inserting, 61
optimization process, 67
PNG/JPEG image, 92
process automation, 78
string of characters, 70
SVG images, 70
SVGMarker object, 92
SVG mask, 72
<symbol> element, 75

J
jQuery, 243

K
Kiwi bird image, 5

L
Lines, polylines, and polygons, 30–32

M, N, O
Markers, 32–38
Mozilla Developer Network (MDN), 213

P, Q
Painting elements, 44, 46
Paths and markers, 32–35
Pattern effects

to CSS backgrounds, 51–55
updated version, 55–56

Philter, 259
Polylines and polygons, 30–32

R
Radial gradients, 49–50
Rectangles, 24–27

S
Scalable vector graphics (SVG)

accessibility, 183
adaptive/responsive, 121
align-center icon, 201
animating borders, 271
assessing performance, 181
cleanupNumericValues

plug-in option, 189
code, 5
Codepen demo, 277
comparing image formats, 7–8
.container div, 274
content responsive, 112
coordinate system, 99
data URIs, 198, 201
desktop support for, 11
dissection, 287
downloading, 188
element, 100
exporting, 179
group elements, 277
Gruntfile.js file, 194
GSAP, 274
height and width attributes, 103
imageContainer class, 280
impact of scaling, 98
lazy loading, 277
libraries

Anime.js, 253
D3.js, 249
filters, 258, 261

Index

298

JavaScript, 241–242
limitations/constraints, 242
list, 244
non-desktop environments, 241
power and flexibility, 243
Snap.svg, 242
third-party libraries, 241
Vivus, 245

media queries, 118
micro-optimize content, 195
mobile support for, 11
morph.to method, 277
Node.js-based tool, 186
Node.js’ File System module, 200
optimization process, 180

command-line operation, 191
Grunt, 189
installing grunt-svgmin, 193
Node.js, 191
package.json file, 192
previewing, 191
results of, 190
testing, 193–194

overlapping, 102
parting shot

panning and zooming images, 291
tilting UI effect, 290
tracking progress, 292

pitfalls, 120
ractive script code, 288
ratio, 106
<rect> element, 274
rules, 114
scalability, 95
scaling toolbox, 102
single div, placeholder, 281

SVGOMG tool, 186
SVGO online, 187
SVGO Properties, 189
svgToMiniDataURI module, 200
template-based charts, 281
toolbox to use, 108
updating, 116
viewBox implementation, 104
web images, 4
working environment, 9–10

Shapes, 12–13
circles and ellipses, 27–30
classic gauge, 40–41
clip-paths, 41–44
gauge, 38–39
lines, polylines, and polygons, 30–32
paths and markers, 32–35
squares and rectangles, 24–27
unusual shapes, 41–44

Sparkline chart, 224
Squares and rectangles, 24–27
SVG, see Scalable Vector Graphics (SVG)

T
Text

adding, 81
effects, 83

Tiltshift.js, 259

U, V
Unusual shapes, 41–44

W, X, Y, Z
Work-in-progress approach, 46

Scalable vector graphics (SVG) (cont.)

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Part I: Getting Started
	Chapter 1: Introducing SVG
	The Benefits of Using SVG
	Comparing Formats
	Setting Up a Working Environment
	Support for SVG
	Creating a Basic Example
	Understanding How It Works

	Adding Fallback Support
	Types of Fallback
	Implementing a Fallback Image
	Adding SVGs as Background Images
	Managing Inline Support
	Supporting an Icon System

	Summary

	Chapter 2: Adding SVG Content to a Page
	Implementing SVG Shapes
	Creating Squares and Rectangles
	Understanding How the Code Works

	Drawing Circles and Ellipses
	Exploring How the Code Works

	Drawing Lines, Polylines, and Polygons
	Exploring How the Code Works

	Constructing Paths and Markers
	Understanding Our Code in Detail
	Adding Markers to SVG Paths
	Understanding How Our Code Works

	Creating More Advanced Shapes
	Dissecting Our Gauge Code

	Creating Unusual Shapes with Clip-Paths
	Painting Elements
	Creating Gradients and Patterns
	Constructing Gradients
	Using Radial Gradients
	Exploring How Our Code Works

	Taking It Further
	Applying Pattern Effects to CSS Backgrounds
	Exploring the Code in Detail
	Creating an Alternative Pattern

	Setting Advanced Configuration Options
	Summary

	Part II: In More Detail
	Chapter 3: Working with Images and Text
	Inserting Images
	Understanding the Benefits

	Exporting Images
	Exporting Images – an Epilogue

	Using SVGs as Data URIs
	Optimizing Our Image
	Understanding How Our Code Works

	Applying Image Masks
	Exploring How the Code Works

	Working with Icons
	Creating Image Sprites with Icons
	Using the <symbol> Element
	Automating the Process

	Adding Text with the <text> Element
	Applying Different Effects to Text
	Exploring How the Code Works

	Embedding Other Content
	Adding Videos
	Implementing a Real-World Example
	Understanding How It Works

	Summary

	Chapter 4: Sizing SVG
	Understanding Scalability
	Understanding the Impact of Scaling

	Getting to Grips with SVG Coordinates
	Applying Coordinates to an SVG

	Introducing the SVG Scaling Toolbox
	Setting Height and Width Attributes
	Implementing a viewBox
	Preserving the Aspect Ratio

	Putting the Toolbox to Use
	Understanding How It Works

	Making SVG Content Responsive
	Introducing the Golden Rules
	Updating SVG Images
	Using Media Queries with SVG Content
	Understanding the Pitfalls
	Making SVG images Adaptive or Responsive?

	Summary

	Chapter 5: Creating Filters
	Introduction
	The Benefits of Using SVG Filters
	Exploring Existing Filters
	Introducing SVG Primitives for Filters
	Manipulating Content with Filters
	Dissecting Our Code

	Creating and Applying Filters
	Changing Color with Filters
	Understanding Our Code
	Calculating Colors to Use

	Re-creating filters à la Instagram
	Understanding How It Works

	Blending and Merging SVG Filters
	Taking It Further in Watercolors
	Creating Our Filter – an Epilogue

	Animating Filter Effects
	Is This the Right Solution?

	Creating a Practical Example
	Understanding What Is Happening

	Summary

	Chapter 6: Animating Content
	Animating with CSS
	Understanding the Different Methods

	Transforming SVG Elements Using CSS
	Moving Content with <animate>
	Creating a Clock Using <animate>
	Dissecting Our Code
	Creating Animated SVG Loaders
	Understanding How the Code Works

	Managing Multiple Animations
	Working with Third-Party Libraries
	Introducing Snap.svg

	Applying Easing Effects to Elements
	Getting Prepared
	Exploring the Code in Detail

	Choosing Our Route – an Epilogue
	Summary

	Chapter 7: Optimizing SVG
	Exporting SVG Images for Use
	Understanding the Importance of Optimization
	Assessing Performance
	Taking Care of Accessibility
	Making Content Accessible

	Shrinking Images with SVGO
	Optimizing Manually
	Understanding How It Works

	Automating the Optimization Process
	Exploring the Demo in More Detail

	Learning How to Micro-optimize Content
	Paying Attention to Data URIs
	Optimizing Data URIs
	Exploring the Code in Detail

	Summary

	Part III: Putting SVG to Use
	Chapter 8: Creating SVG Charts
	Understanding the Benefits of SVG for Charts
	Designing Individual Charts Using SVG
	Creating Donuts
	Understanding How Our Chart Works
	Working Through the Formula
	Putting It into Practice

	Eating Pie
	Exploring the Code in Detail

	Raising the Bar
	Understanding Our Code

	Connecting the Dots
	Dissecting Our Code

	Sparking Lines to Life
	Breaking Apart Our Code

	Making Charts Interactive
	Animating Chart Content
	Animating Charts Using CSS
	Animating Charts with Snap.svg
	Breaking Down Our Code

	Making Charts Interactive – a Postscript
	Exploring Other Library Options

	Creating Charts Online Using amcharts.js
	Summary

	Chapter 9: Incorporating SVG Libraries
	Why Use a Library?
	Choosing the Right Library
	An Overview of Available Libraries

	Using Vivus to Draw SVG Images
	Understanding How It Works

	Creating Bubble Charts with D3
	Exploring Our Demo in Detail
	Improving Our Design

	Getting Creative with Anime.js
	Dissecting Our Demo

	Taking a Different Look at Filters
	Exploring the Code in More Detail

	Summary

	Chapter 10: Taking It Further
	Manipulating SVG with JavaScript
	Dissecting the Markup Code
	Dissecting Our Code – the Functions Used

	Animating Borders Using SVG
	Dissecting the Demo

	Creating Menus Using GSAP and SVG
	Understanding How It Works

	Lazy Loading with SVG
	Breaking Apart Our Code

	Creating Template-Based Charts
	Dissecting the Code
	Exploring the Ractive Script Code

	A Parting Shot
	Tilting UI Effect
	Panning and Zooming Images
	Tracking Progress

	Summary

	Index

